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Abstract. This note introduces the relative energy for two-species electromagnetic fluid models.

The relative energy identity for a bipolar Euler-Maxwell system is formally derived. Moreover, two

applications of the relative energy for these type of systems are given. The first application deals

with the weak-strong uniqueness property of a Euler-Poisson system, while the second concerns the

relaxation limit of a bipolar Euler-Poisson system towards a bipolar drift-diffusion system.

1. Introduction

In this note, one introduces the relative energy for a bipolar Euler-Maxwell system. The system

under consideration is composed of two sets of Euler equations that describe the evolution of a two-

species fluid composed of charged particles, e.g. ions and electrons,

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇p1(ρ) = ρ(E + u×B)

∂tn+∇ · (nv) = 0

∂t(nv) +∇ · (nv ⊗ v) +∇p2(n) = −n(E + v ×B)

(1.1)

coupled with Maxwell’s equations to account for the electromagnetic effects

∂tB +∇× E = 0

∂tE −∇×B + ρu− nv = 0

∇ · E = ρ− n

∇ ·B = 0 .

(1.2)

These systems are a basic physical model underlying several scientific branches that model electromag-

netic effects such as plasma physics or semiconductor theory [4]. The densities and linear velocities

of the fluids are denoted by ρ, n and u, v, respectively, while E,B stand for the electric and mag-

netic fields, respectively. Moreover, the functions p1, p2 represent the pressures and are given by

pi(r) = rγi , r ≥ 0, γi > 1, i = 1, 2.

The purpose of this work is twofold. Firstly, one presents the relative energy identity for the

bipolar Euler-Maxwell system (1.1)-(1.2); this being the content of Section 2. Particularly, in Section

3, one considers the bipolar Euler-Poisson system. Secondly, one gives two applications of the relative

energy method in scenarios where the magnetic effects are neglected. The first application, presented

in Section 4, concerns the weak-strong uniqueness property of a single-species Euler-Poisson system

[1]. The second application, in Section 5, exposes the main result obtained in [2], which establishes
1
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the relaxation limit of a bipolar Euler-Poisson system with friction towards a bipolar drift-diffusion

system.

The relative energy method is an efficient mathematical tool for stability analysis in the context of

conservation laws; see [5] for early developments. It also proved to be useful in establishing limiting

processes; see [9]. In what concerns mathematical literature on two-species Euler-Maxwell systems,

refer to [3] for a formal derivation of two hierarchies of models from the bipolar Euler-Maxwell system

with friction, and to [6] for a theory of existence of global smooth solutions to the bipolar Euler-

Maxwell system.

2. Bipolar Euler-Maxwell system

Consider the following bipolar Euler-Maxwell system with dimensional constituents:

∂tni +∇ · (niui) = 0

∂t(miniui) +∇ · (miniui ⊗ ui) +∇pi(ni) = qini(E + ui ×B)

∂tne +∇ · (neue) = 0

∂t(meneue) +∇ · (meneue ⊗ ue) +∇pe(ne) = qene(E + ue ×B)

∂tB +∇× E = 0

ε0∂tE − µ−1
0 ∇×B + qiniui + qeneue = 0

ε0∇ · E = qini + qene

∇ ·B = 0

(2.1)

For a species j = i, e (ions and electrons), the density is denoted by nj (m−3), the linear velocity is

represented by uj (m · s−1), pj (kg · m−1 · s−2) is the pressure, mj (kg) is the mass and qj (s · A) is

the charge. The electromagnetic field created by the charged particles is denoted by (E,B), where

E (kg · m · s−3 · A−1) stands for the electric field and B (kg · s−2 · A−1) for the magnetic field. The

permittivity and permeability of free space are denoted by ε0 (kg
−1·m−3·s4·A2) and µ0 (kg·m·s−2·A−2),

respectively. The identity ε0µ0 = 1/c2 holds, where c is the speed of light.

2.1. Nondimensionalization. Let e be the elementary charge and assume that qi = −qe = e.

Following the ideas in [3, 7] one considers the scaling:

x = Lx′ , t = τ0t
′

nj = N0n
′
j , uj = v0u

′
j , v0 = L/τ0 , pj = κBT0N0p

′
j , j = i, e

B = B0B
′ , B0 =

κBT0

eLv0
, E = v0B0E

′ ,

where κB is the Boltzmann constant and T0 is the temperature of the system. After dropping the

primes and setting ρ = ni, n = ne, u = ui, v = ve, p1 = pi, p2 = pe, the non-dimensional version of
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(2.1) becomes: 

∂tρ+∇ · (ρu) = 0

ζ
(
∂t(ρu) +∇ · (ρu⊗ u)

)
+∇p1(ρ) = ρ(E + u×B)

∂tn+∇ · (nv) = 0

ϵ
(
∂t(nv) +∇ · (nv ⊗ v)

)
+∇p2(n) = −n(E + v ×B)

∂tB +∇× E = 0

λ2∂tE − β−1∇×B + ρu− nv = 0

λ2∇ · E = ρ− n

∇ ·B = 0

(2.2)

where ζ =
miv

2
0

κBT0
, ϵ =

mev
2
0

κBT0
, β =

µ0N0e
2v20L

2

κBT0
, λ =

√
ε0κBT0

e2L2N0
. At this point one sets α =

v20
c2

and

assumes that ζ = 1 ⇔ v0 =

√
κBT0

mi
. Then β =

miN0v
2
0

B2
0/µ0

=
N0κBT0

B2
0/µ0

is the beta of the plasma, i.e.

the ratio of the plasma pressure N0κBT0 to the magnetic pressure B2
0/µ0, the scaled Debye length

squared is given by λ2 =
α

β
, and ϵ =

me

mi
is the quotient of the electron mass over the ion mass.

2.2. Conserved quantities. Here one presents the energy identity for system (2.2), which is formally

derived by direct computation. First, one introduces the internal energy functions h1, h2 which are

connected with the pressures p1, p2 through the following relations:

rh′′i (r) = p′i(r) , rh′i(r) = pi(r) + hi(r) , i = 1, 2 , (2.3)

and are therefore given by

hi(r) =
1

γi − 1
rγi , r ≥ 0 , γi > 1 , i = 1, 2 .

In what follows (ρ, ρu, n, nv,E,B) is assumed to satisfy (2.2). Multiplying the first and second mo-

mentum equations of (2.2) by u and v, respectively, after using the remaining equations one obtains

the energy identity of system (2.2):

∂tH+∇ · F = 0 , (2.4)

where

H = ζ 1
2ρ|u|

2 + ϵ12n|v|
2 + h1(ρ) + h2(n) + λ2 1

2 |E|2 + β−1 1
2 |B|2

is the total energy, and

F = ζ 1
2ρ|u|

2u+ ϵ12n|v|
2v + ρh′1(ρ)u+ nh′2(n)v + β−1E ×B

is the flux. Identity (2.4) represents the conservation of total energy of system (2.2).

In order to obtain another conserved quantity, one computes the evolution of the Poynting vector

E ×B and obtains

∂tM+∇ · N = 0 , (2.5)

where

M = ζρu+ ϵnv + λ2E ×B ,
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N = ζρu⊗ u+ ϵnv ⊗ v + p1(ρ)I + p2(n)I + λ2 1
2 |E|2I + β−1 1

2 |B|2I − λ2E ⊗ E − β−1B ⊗B .

2.3. Relative energy identity. Assume that (ρ̄, ρ̄ū, n̄, n̄v̄, Ē, B̄) also satisfies (2.2). The relative

energy Ψ̂ of system (2.2) is given by

Ψ̂ = ζ 1
2ρ|u− ū|2 + ϵ12n|v − v̄|2 + h1(ρ|ρ̄) + h2(n|n̄) + λ2 1

2 |E − Ē|2 + β−1 1
2 |B − B̄|2 ,

where the relative quantity h(r|r̄) is given by h(r|r̄) = h(r)− h(r̄)− h′(r)(r − r̄).

Computing the time derivative of Ψ̂ yields the relative energy identity of system (2.2):

∂tΨ̂ +∇ · Θ̂ = Σ̂1 + Σ̂2 + Σ̂3 + Σ̂4 , (2.6)

where

Θ̂ = ζ 1
2ρ|u− ū|2u+ ϵ12n|v − v̄|2v + h1(ρ|ρ̄)ū+ h2(n|n̄)v̄

+ ρ(h′1(ρ)− h′1(ρ̄))(u− ū) + n(h′2(n)− h′2(n̄))(v − v̄)

+ β−1(E − Ē)× (B − B̄)

is the relative flux, and

Σ̂1 = −ζ∇ū : ρ(u− ū)⊗ (u− ū)− ϵ∇v̄ : n(v − v̄)⊗ (v − v̄) ,

Σ̂2 = −p1(ρ|ρ̄)∇ · ū− p2(n|n̄)∇ · v̄ ,

Σ̂3 = −((ρ− ρ̄)ū− (n− n̄)v̄) · (E − Ē) ,

Σ̂4 = −(ū× ρ(u− ū)− v̄ × n(v − v̄)) · (B − B̄) .

Assuming that the internal energy functions h1, h2 are strictly convex, one can consider the relative

energy Ψ̂ as a way to compare two different states of system (2.2). As an illustration, assume that

(ρ, ρu, n, nv,E,B), (ρ̄, ρ̄ū, n̄, n̄v̄, Ē, B̄) are two smooth and bounded away from vacuum solutions of

(2.2) defined for times t ∈ [0, T [, and that γ1 = γ2 ≥ 2. Integrating identity (2.6) over space gives

d

dt
Ψ = Σ1 +Σ2 +Σ3 +Σ4 ,

where Ψ =
∫
Ψ̂ dx and Σi =

∫
Σ̂i dx, i = 1, 2, 3, 4. Then, one gets the bounds Σi ≤ CΨ, i = 1, 2, 3, 4,

in the following way

Σ1 ≤ C(||∇ū||∞ + ||∇v̄||∞)

∫
ζ
1

2
ρ|u− ū|2 + ϵ

1

2
n|v − v̄|2 dx ≤ CΨ ,

Σ2 ≤ (||∇ · ū||∞ + ||∇ · v̄||∞)

∫
h1(ρ|ρ̄) + h2(n|n̄) dx ≤ CΨ ,

Σ3 ≤ C(||ū||∞ + ||v̄||∞)

∫
1

2
h1(ρ|ρ̄) +

1

2
h2(n|n̄) + |E − Ē|2 dx ≤ CΨ ,

Σ4 ≤ (||ū||∞ + ||v̄||∞)

∫
1

2
ρ|u− ū|2 + 1

2
n|v − v̄|2 dx

+ (||ū||∞ + ||v̄||∞)(||ρ||∞ + ||n||∞)

∫
|B − B̄|2 dx

≤ CΨ .

Thus,
d

dt
Ψ ≤ CΨ ,
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from which Gronwall’s inequality yields the stability result Ψ(t) ≤ C(T )Ψ(0). Therefore, if the two

different states coincide at the initial time, then they coincide at all times where they are defined.

3. Bipolar Euler-Poisson system

One would like to replicate the relative energy procedure detailed above for classes of solutions

with less regularity. Some results on that direction have been obtained for particular cases where the

magnetic effects are neglected. Taking B = 0 in (1.1)-(1.2) gives

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇p1(ρ) = ρE

∂tn+∇ · (nv) = 0

∂t(nv) +∇ · (nv ⊗ v) +∇p2(n) = −nE

∇× E = 0

∇ · E = ρ− n .

(3.1)

From the equation ∇ × E = 0 one writes E = −∇ϕ, where ϕ is the electric potential. Substituting

this into system (3.1) one obtains the bipolar Euler-Poisson system, where the potential ϕ satisfies the

Poisson equation −∆ϕ = ρ− n. The solution of the Poisson equation is expressed as

ϕ(t, x) =
(
K ∗ (ρ− n)

)
(t, x) :=

∫
Ω
K(x, y)

(
ρ(t, y)− n(t, y)

)
dy ,

and its spatial gradient is understood as

∇ϕ(t, x) =
(
∇xK ∗ (ρ− n)

)
(t, x) :=

∫
Ω
∇xK(x, y)

(
ρ(t, y)− n(t, y)

)
dy ,

where the kernel K is either the Newtonian kernel in case Ω = Rd, or the Neumann function in case

Ω ⊆ Rd is a smooth bounded domain [8], d ≥ 3. In either case, one has the bounds

|K(x, y)| ≤ C

|x− y|d−2
, |∇xK(x, y)| ≤ C

|x− y|d−1
. (3.2)

3.1. Riesz potentials and integration by parts formulas. The theory of Riesz potentials proved

to be useful to deal with the potential ϕ, essentially due to (3.2).

The Riesz potential of order 0 < α < d of a function f : Rd → R is the function Iαf given by

Iαf(x) =

∫
Rd

f(y)

|x− y|d−α
dy .

If f ∈ Lp(Rd) for some 1 < p < d/α, then

||Iαf ||
L

dp
d−αp (Rd)

≤ C||f ||Lp(Rd) , (3.3)

for some positive constant C = C(α, d, p) [10].

Now let f = ρ − n so that ϕ = K ∗ f and assume that f ∈ L1 ∩ Lγ . Combining (3.2) and (3.3)

yields:

(1) if γ ≥ 2d
d+2 then ϕ ∈ L

2d
d−2 , ∇ϕ ∈ L2 ,

(2) if γ ≥ 2d
d+1 then f∇ϕ ∈ L1 .
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With this at hand, using a density argument one derives two integration by parts formulas that will

be crucial when dealing with the weak formulation of the system.

Let g ∈ Lγ ∩ L1 and φ = K ∗ g. Then, if γ ≥ 2d
d+2 one has that∫

∇ϕ · ∇φ dx =

∫
fφ dx =

∫
gϕ dx =

∫ ∫
f(x)K(x, y)g(y) dxdy . (3.4)

Furthermore, if ū is a smooth vector field vanishing at infinity and γ ≥ 2d
d+1 , then∫

f∇ϕ · ū dx =

∫
∇ū : ∇ϕ⊗∇ϕ dx−

∫
(∇ · ū)12 |∇ϕ|2 dx . (3.5)

4. Weak-strong uniqueness for the Euler-Poisson system

This section presents the weak-strong uniqueness principle for the following Euler-Poisson system

in ]0, T [×Rd, with T < ∞ and d ∈ N, d ≥ 3 :
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇ργ + ρ∇ϕ = 0

−∆ϕ = ρ .

(4.1)

In this case, the relative energy Ψ is given by

Ψ =

∫
Rd

1
2ρ|u− ū|2 + h

(
ρ|ρ̄

)
+ 1

2 |∇
(
ϕ− ϕ̄

)
|2 dx ,

and it is the tool used two compare two solutions. A stability identity satisfied by Ψ yields the following

result:

Theorem 4.1. Let (ρ, ρu, ϕ) be a dissipative weak solution of (4.1) with γ ≥ 2d
d+1 , and let (ρ̄, ρ̄ū, ϕ̄) be

a strong solution of (4.1) with ρ̄ > 0. If (ρ0, ρ0u0) = (ρ̄0, ρ̄0ū0) then, for every t ∈ [0, T [,(
ρ(t), ρ(t)u(t), ϕ(t)

)
=

(
ρ̄(t), ρ̄(t)ū(t), ϕ̄(t)

)
.

A dissipative weak solution is a vector function (ρ, ρu) with ρ ≥ 0 which satisfies (4.1) in a weak

sense, has the properties of mass conservation and finitude of energy, and satisfies a weak form of the

energy identity. By a strong solution (ρ̄, ρ̄ū) one understands a classical solution of (4.1) with bounded

derivatives.

4.1. Sketch of the proof. Let (ρ, ρu), with ϕ = 1
c(d)I2ρ, be a dissipative weak solution of (4.1) with

γ ≥ 2d
d+2 , and let (ρ̄, ρ̄ū), with ϕ̄ = 1

c(d)I2ρ̄, be a strong solution of (4.1). Then, for each t ∈ [0, T [, the

relative energy Ψ between these two solutions satisfies

Ψ(t)−Ψ(0) ≤ J1(t) + J2(t) + J3(t) , (4.2)

where

J1(t) = −
∫ t

0

∫
Rd

∇ū : ρ(u− ū)⊗ (u− ū) dxdτ ,

J2(t) = −
∫ t

0

∫
Rd

(∇ · ū)p(ρ|ρ̄) dxdτ ,

J3(t) =

∫ t

0

∫
Rd

(ρ− ρ̄)ū · ∇(ϕ− ϕ̄) dxdτ .
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Next, under the same conditions as Theorem 4.1 one obtains the bounds:

Ji(t) ≤ C

∫ t

0
Ψ(τ)dτ , t ∈ [0, T [ , i = 1, 2, 3 . (4.3)

The bounds for the first two terms are obtained in a straightforward way, while the last term is handled

using the integration by parts formula (3.5). Combining (4.2) with (4.3) gives

Ψ(t) ≤ Ψ(0) + C

∫ t

0
Ψ(τ) dτ , t ∈ [0, T [ ,

hence, by Gronwall’s inequality,

Ψ(t) ≤ eCTΨ(0) , t ∈ [0, T [ ,

from which Theorem 4.1 follows by the strict convexity of h(ρ) = 1
γ−1ρ

γ for ρ > 0.

5. Relaxation limit of the bipolar Euler-Poisson system

In this section one exposes the results obtained in [2]. It concerns the emergence of the bipolar

drift-diffusion system 
∂tρ = ∇ ·

(
ρ∇(h′1(ρ) + ϕ)

)
∂tn = ∇ ·

(
n∇(h′2(n)− ϕ)

)
−∆ϕ = ρ− n

(5.1)

ρ∇(h′1(ρ) + ϕ) · ν = n∇(h′2(n)− ϕ) · ν =
∂ϕ

∂ν
= 0 , on [0, T [× ∂Ω

as the relaxation limit of the bipolar Euler-Poisson system

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) + 1
ε∇p1(ρ) = −1

ερ∇ϕ− 1
ερu

∂tn+∇ · (nv) = 0

∂t(nv) +∇ · (nv ⊗ v) + 1
ε∇p2(n) =

1
εn∇ϕ− 1

εnv

−∆ϕ = ρ− n

(5.2)

u · ν = v · ν =
∂ϕ

∂ν
= 0 , on [0, T [× ∂Ω

in the space-time domain ]0, T [× Ω, where T > 0 is a fixed time horizon and Ω is a smooth bounded

domain of Rd with smooth boundary ∂Ω, where d ∈ N \ {1, 2}.
In this case, one regards a solution (ρ̄, n̄, ϕ̄) of (5.1) as an approximate solution of (5.2) via

∂tρ̄+∇ · (ρ̄ū) = 0

∂t(ρ̄ū) +∇ · (ρ̄ū⊗ ū) + 1
ε∇p1(ρ̄) = −1

ε ρ̄∇ϕ̄− 1
ε ρ̄ū+ ē1

∂tn̄+∇ · (n̄v̄) = 0

∂t(n̄v̄) +∇ · (n̄v̄ ⊗ v̄) + 1
ε∇p2(n̄) =

1
ε n̄∇ϕ̄− 1

ε n̄v̄ + ē2

−∆ϕ̄ = ρ̄− n̄

(5.3)
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where

ū = −∇
(
h′1(ρ̄) + ϕ̄

)
, v̄ = −∇

(
h′2(n̄)− ϕ̄

)
,

ē1 = ∂t(ρ̄ū) +∇ · (ρ̄ū⊗ ū) , ē2 = ∂t(n̄v̄) +∇ · (n̄v̄ ⊗ v̄) ,

and compares the two solutions using the relative energy Ψ given by

Ψ =

∫
Ω
ε12ρ|u− ū|2 + ε12n|v − v̄|2 + h1(ρ|ρ̄) + h2(n|n̄) + 1

2 |∇(ϕ− ϕ̄)|2 dx .

The following result is obtained:

Theorem 5.1. Let (ρ, ρu, n, nv), with ϕ = N ∗ (ρ − n), be a dissipative weak solution of (5.2) with

γ1, γ2 ≥ 2− 1
d , and let (ρ̄, ρ̄ū, n̄, n̄v̄), with ϕ̄ = N ∗ (ρ̄− n̄), be a strong and bounded away from vacuum

solution of (5.1). There exists C > 0 such that for t ∈ [0, T [ the relative energy Ψ between these two

solutions satisfies the stability estimate

Ψ(t) ≤ eCT
(
Ψ(0) + ε2

)
. (5.4)

Therefore if Ψ(0) → 0 as ε → 0, then Ψ(t) → 0 as ε → 0 for every t ∈ [0, T [.

By a dissipative weak solution one understands a vector function (ρ, ρu, n, nv), with ϕ = N ∗(ρ−n),

that satisfies (5.2) in a weak sense, has finite energy and conserved mass, and satisfies a weak form of

the energy identity. Strong solutions (ρ̄, ρ̄ū, n̄, n̄v̄), ϕ̄ = N ∗ (ρ̄− n̄), of (5.1) are classical solutions with

bounded derivatives. Similarly as in the proof of Theorem 4.1, the first step towards the conclusion of

Theorem 5.1 is a relative energy inequality satisfied by a weak solution of (5.2) and a strong solution

of (5.1). Then, one bounds the terms on the right-hand side of the relative energy inequality in terms

of Ψ and concludes using Gronwall’s inequality. The term on the right-hand side of the relative energy

inequality that deserves more attention is the one containing the electric potentials. To handle this

term one uses the estimate (3.3) together with interpolation of Lp spaces. For the full details refer to

[2].
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