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Abstract. In this work, a mode of convergence for measurable functions is introduced. A related

notion of Cauchy sequence is given and it is proved that this notion of convergence is complete in the

sense that Cauchy sequences converge. Moreover, the preservation of convergence under composition

is investigated. The origin of this mode of convergence lies in the path of proving that the density of

a Euler system converges almost everywhere (up to subsequences) towards the density of a non-linear

diffusion system, as a consequence of the convergence in the relaxation limit.

1. Introduction

In the context of diffusive relaxation, it has been proved that a family
(
(ρε, uε)

)
ε>0

, where (ρε, uε) is

a dissipative weak solution of the Euler system with friction∂tρε +∇ · (ρεuε) = 0,

∂t(ρεuε) +∇ · (ρεuε ⊗ uε) = −1

ε
ρε∇

δE
δρ

(ρε)−
1

ε
ρεuε,

converges in the sense of relative energy to a strong and bounded away from vacuum solution ρ̄ of the

non-linear diffusion system

∂tρ̄ = ∇ ·
(
ρ̄∇δE

δρ
(ρ̄)

)
.

The systems of equations above are defined in a space-time domain (0, T ) × Ω, where T > 0 is a fixed

time horizon and Ω is either the d-dimensional torus Td or a smooth bounded domain of Rd, d ∈ N.
Moreover, the functional E is defined as

E(ρ) :=
∫
Ω

h(ρ) dx,

where h is the internal energy function.

The convergence is established by means of the relative energy Ψε : [0, T ) → R, given by

Ψε(t) =

∫
Ω

ε 1
2ρε|uε − ū|2 + h(ρε|ρ̄) dx, ū = −∇δE

δρ
(ρ̄),

where

h(ρ|ρ̄) = h(ρ)− h(ρ̄)− h′(ρ̄)(ρ− ρ̄).

Specifically, assuming that Ψε(0) → 0 as ε → 0, then

sup
[0,T [

Ψε → 0 as ε → 0.

In particular, for each t ∈ [0, T ), it holds that∫
Ω

h(ρε|ρ̄) dx → 0 as ε → 0. (1.1)

For more details refer to [1, 6, 7, 10, 11].

At this point, it is relevant to examine if (1.1) implies that the sequence (ρε) converges almost every-

where to ρ̄, even if one has to pass to a subsequence. In the quest to reach that conclusion, one stumbles

upon a new notion of convergence. The intent of this work is to explore that mode of convergence at

the generality of measurable functions on a general measure space. The appearance of that notion of

convergence is described next.
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Within the framework of the analysis described above, the function h is assumed to belong to the class

Hγ
k given by

Hγ
k =

{
h ∈ C2((0,∞)) ∩ C([0,∞))

∣∣∣ lim
ρ→∞

h(ρ)

ργ
=

k

γ − 1
, h′′(ρ) > 0 ∀ρ > 0

}
,

where k > 0 and γ > 1. A typical example of a function belonging to Hγ
k is h(ρ) = k

γ−1ρ
γ . Regarding

that class of functions, recall the following lemma [11]:

Lemma 1.1. Let h ∈ Hγ
k with k > 0 and γ > 1, and let ρ̄ ∈ [δ,M ] for some δ > 0 and M < ∞. Then,

there exists R ≥ M+1 and positive constants C1, C2 depending on k, γ, δ,M such that

h(ρ|ρ̄) ≥

C1|ρ− ρ̄|2, if ρ ∈ [0, R],

C2|ρ− ρ̄|γ , if ρ ∈ ]R,∞[.

The next step is to combine (1.1) with the previous lemma. Let ε = 1/n, n ∈ N, ρn = ρε and define

Bn = Bn(t) by

Bn = {x ∈ Ω | 0 ≤ ρn(t, x) ≤ R},

where R is as in the lemma. Thus,∫
Ω

h(ρn|ρ̄) dx =

∫
Bn

h(ρn|ρ̄) dx+

∫
Bc

n

h(ρn|ρ̄) dx

≥ C1

∫
Bn

|ρn − ρ̄|2 dx+ C2

∫
Bc

n

|ρn − ρ̄|γ dx

> C1

∫
Bn

|ρn − ρ̄|2 dx+ C2|R−M |γL(Bc
n)

≥ C1

∫
Bn

|ρn − ρ̄|2 dx+ C2L(Bc
n),

where Bc
n denotes the complement of Bn in Ω and L is the Lebesgue measure. Hence, from (1.1) one can

conclude that ∫
Bn

|ρn − ρ̄|2 dx → 0, L(Bc
n) → 0, as n → ∞. (1.2)

This motivates a notion of convergence in which a sequence of measurable functions (ρn) converges

to a measurable function ρ̄ if there exists a sequence of measurable sets (Bn) whose measure of the

complements tends to zero as n → ∞ and such that the integral of |ρn − ρ̄|p over Bn goes to zero as

n → ∞, where p ≥ 1; see Definition 2.1. As one will see, this notion of convergence implies convergence

in measure, which is a sufficient condition for the existence of a subsequence that converges almost

everywhere [2].

Section 2 presents the notions of convergence that are treated in this work, together with the relations

between them. Two notions of convergence are introduced. The first, the one derived in the analysis

above, represents the focus of this work. The second, which is considered here for its similarity to the

first, turned out to be very useful to prove a completeness result.

Section 3 introduces notions of Cauchy sequences associated with the convergences studied in this

work. Moreover, completeness theorems related to those Cauchy notions are obtained.

Section 4 is devoted to understand how different modes of convergence become equivalent under extra

assumptions. As a consequence of this study, it is proved that the space of measurable functions, together

with the notion of convergence motivated by (1.2), form a sequential convergence class [8, 9].

Section 5 is inspired by [3] and explores in which conditions a function preserves (under composition)

the modes of convergence treated in this work. For these modes of convergence, one finds that such

preservation holds for Lipschitz continuous functions. Furthermore, it turns out that this characterizes

Lipschitz continuity. Moreover, it is proved that convergence in Lp is also preserved by Lipschitz contin-

uous functions, at the generality of measurable functions, which is different from a result obtained in [3],

where the same investigation is done considering sequences in Lp.
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Notation and conventions

Unless stated otherwise, all considered functions belong to a general measure space (X,X, µ). The
elements of X are called measurable sets, and by a measurable function one understands a X-measurable

real-valued function defined on X. The space of measurable functions is denoted by M(X). Given a

sequence (fn), one writes (gn) ⊆ (fn) to indicate that (gn) is a subsequence of (fn). In the examples, one

considers (X,X, µ) = (A,B,L), where A is a subset of R, B is the Borel σ-algebra and L is the Lebesgue

measure. The composition of a function φ : R → R and a function f : X → R is denoted by φ(f). The

set of positive integers is denoted by N while the set of non-negative integers is denoted by N0. Moreover,

the integrability exponent p is a fixed real number belonging to [1,∞).

2. Modes of convergence

Within the realm of measurable functions, many are the ways of saying that a sequence converges to

a certain limit. Among the most important convergence notions, one encounters the classical notions

of convergence in Lp, in measure, almost uniformly (a.u.) or almost everywhere (a.e.). In this man-

uscript, two other notions of convergence for measurable functions are introduced. The first, named

αp-convergence, is the main focus of this work, and has its definition motivated by the analysis detailed

above. The second, convergence almost in Lp, arises as a combination of the Lp and almost uniformly

convergences, and it is considered here due to its similarity to the αp-convergence.

It is always the case that the following relations hold

Lp-convergence ⇒ convergence almost in Lp ⇒ αp-convergence ⇒ convergence in measure.

Interestingly enough, none of this modes of convergence are equivalent. Moreover, in a finite measure

space one has that

convergence a.e. ⇒ convergence a.u. ⇒ convergence almost in Lp ⇒ αp-convergence.

2.1. Preliminaries. First, one recalls some basic definitions and results from the classical theory. It

is customary to define convergence in Lp for sequences of functions in Lp, however here one considers

measurable functions in general.

A sequence of measurable functions (fn) is said to converge to a measurable function f :

(i) in Lp if ∫
X

|fn − f |p dµ → 0 as n → ∞,

(ii) in measure if

∀δ > 0 µ
(
{x ∈ X | |fn(x)− f(x)| ≥ δ}

)
→ 0 as n → ∞,

(iii) almost uniformly if

∀δ > 0 ∃Eδ ∈ X with µ(Eδ) < δ such that fn → f uniformly on Ec
δ ,

(iv) almost everywhere if

∃N ∈ X with µ(N) = 0 such that fn → f pointwise on N c.

A common feature of these modes of convergence is the uniqueness almost everywhere of the limit, that

is, if a sequence (fn) converges to f and g in one the previous modes, then f = g almost everywhere.

In general, some notions of convergence imply others. For instance, if (fn) converges to f in Lp then

it converges to f in measure since

δpµ
(
{x ∈ X | |fn(x)− f(x)| ≥ δ}

)
≤

∫
X

|fn − f |p dµ.

Furthermore, if (fn) converges almost uniformly to f then (fn) converges to f in measure. On the other

hand, if (fn) converges to f in measure then there exists a subsequence (fnk
) that converges to f almost

uniformly (and hence almost everywhere) [2].
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2.2. αp-Convergence.

Definition 2.1. A sequence (fn) of measurable functions is said to αp-converge to a measurable function

f if there exists a sequence of measurable sets (Bn) with µ(Bc
n) → 0 as n → ∞ such that∫

Bn

|fn − f |p dµ → 0 as n → ∞.

In this case one writes fn
αp−−→ f.

It is clear that convergence in Lp implies αp-convergence (simply take Bn = X for every n ∈ N),
however, the reciprocal is not true in general.

Example 2.2. Let (X,X, µ) = ([0, 1],B,L) and fn = n1/pχ[0,1/n]. Then (fn) αp-converges to 0 but it

does not converge to 0 in Lp. Indeed, setting Bn =]1/n, 1] one has that∫
Bn

|fn|p dµ =

∫
[0,1/n]∩]1/n,1]

n dµ = 0,

but ∫
X

|fn|p dµ = 1.

As a first result, one shows that the αp-convergence is linear.

Proposition 2.3. If (fn), (gn) αp-converge to f, g, respectively, and a, b ∈ R then (afn+bgn) αp-converges

to af + bg.

Proof. Let (Bn), (Dn) be the sequences of measurable sets associated with the αp-convergence of (fn), (gn),

respectively. Let Cn = Bn ∩Dn so that µ(Cc
n) ≤ µ(Bc

n) + µ(Dc
n) → 0 as n → ∞. The result follows from

the inequality∫
Cn

|afn + bgn − af − bg|p dµ ≤ 2p−1|a|p
∫
Bn

|fn − f |p dµ+ 2p−1|b|p
∫
Dn

|gn − g|p dµ.

□

Next, it is shown that the αp-convergence implies convergence in measure.

Proposition 2.4. Let (fn) be a sequence of measurable functions that αp-converges to a measurable

function f . Then (fn) converges to f in measure.

Proof. Suppose, towards a contradiction, that

∃δ > 0 ∃ε > 0 ∀n ∈ N ∃kn ≥ n µ(Eδ
kn
) ≥ ε,

where

Eδ
kn

= {x ∈ X | |fkn
(x)− f(x)| ≥ δ}.

By hypothesis, there exist a sequence of measurable sets (Bn) and N1, N2 ∈ N such that

∀k ≥ N1

∫
Bk

|fk − f |p dµ <
δpε

2
, ∀k ≥ N2 µ(Bc

k) <
ε

2
.

Let N = max{N1, N2}. There exists kN ≥ N such that µ(Eδ
kN

) ≥ ε. Then

ε ≤ µ(Eδ
kN

) = µ
(
Eδ

kN
∩BkN

) + µ(Eδ
kN

∩Bc
kN

) < µ(Eδ
kN

∩BkN
) +

ε

2
,

whence

µ(Eδ
kN

∩BkN
) >

ε

2
.

Consequently, ∫
BkN

|fkN
− f |p dµ ≥

∫
Eδ

kN
∩BkN

|fkN
− f |p dµ ≥ δpµ(Eδ

kN
∩BkN

) >
δpε

2
,

a contradiction. □
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As a simple corollary of the previous result one has the following:

Corollary 2.5. If fn
αp−−→ f and fn

αp−−→ g, then f = g almost everywhere.

Even though the αp-convergence implies convergence in measure, the reciprocal is not, in general, true.

Example 2.6. Let (X,X, µ) = ([0,∞),B,L) and fn = 1
n1/pχ[0,n]. One can readily see that (fn) converges

to 0 in measure. However, it does not αp-converge to 0. In order to see that, let (Bn) be a sequence of

measurable sets such that µ(Bc
n) → 0 as n → ∞, and notice that∫

Bn

fp
n dµ =

1

n
µ([0, n] ∩Bn)

=
1

n

(
µ([0, n])− µ([0, n] ∩Bc

n)
)

= 1− 1

n
µ([0, n] ∩Bc

n)

→ 1 as n → ∞,

since
1

n
µ([0, n] ∩Bc

n) ≤
1

n
µ(Bc

n) → 0 as n → ∞.

Remark 2.7. The sequences in Examples 2.2 and 2.6 are some of the canonical examples of sequences

that converge in measure but not in Lp to a certain limit. In light of the αp-convergence, one has a way

of distinguishing these two examples as one αp-converges while the other does not.

2.3. Convergence almost in Lp.

Definition 2.8. A sequence (fn) of measurable functions is said to converge almost in Lp to a measurable

function f if for each δ > 0 there exists a measurable set Eδ with µ(Eδ) < δ such that∫
Ec

δ

|fn − f |p dµ → 0 as n → ∞.

It is clear that convergence in Lp implies convergence almost in Lp (take Eδ = ∅ for any δ > 0),

but the reciprocal is not true in general (consider the sequence in Example 2.2). Furthermore, arguing

by contraction as in the proof of Proposition 2.4, one can prove that convergence almost in Lp implies

convergence in measure. For an example in which a sequence converges in measure but not almost in Lp

consider Example 2.6. Convergence almost in Lp is also the natural mode of convergence for almost in

Lp spaces introduced in [4, 5] .

Next, one wishes to explore the relationship between the αp-convergence and the convergence almost

in Lp. First, it is proved that almost in Lp convergence implies αp-convergence.

Proposition 2.9. Let (fn) be a sequence of measurable functions that converges almost in Lp to a

measurable function f . Then (fn) αp-converges to f .

Proof. Since (fn) converges to f almost in Lp, for each k ∈ N there exist a measurable set Ek with

µ(Ek) < 1/k and a number N(k) ∈ N such that for each n ≥ N(k) one has∫
Ec

k

|fn − f |p dµ <
1

k
.

One can assume, without loss of generality, that N(k + 1) > N(k) ∀k ∈ N. For each n ∈ N let Bn = Ec
1

if n ≤ N(2) and Bn = Ec
k if N(k) < n ≤ N(k + 1), k ∈ N \ {1}. It is clear that µ(Bc

n) → 0 as n → ∞.

Let ε > 0 and let k ∈ N \ {1} be such that 1/k < ε. For n > N(k) one has that∫
Bn

|fn − f |p dµ =

∫
Ec

k+j

|fn − f |p dµ,

where j ∈ {0, 1, 2, . . .} is such that N(k + j) < n ≤ N(k + j + 1). Consequently, for n > N(k),∫
Bn

|fn − f |p dµ <
1

k + j
≤ 1

k
< ε,
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which concludes the proof. □

The reciprocal of the previous proposition is not true in general.

Example 2.10. Let (X,X, µ) = ([0, 1],B,L) and for each n ∈ N let k(n), j(n) ∈ N0 be such that

n = 2k(n) + j(n), 0 ≤ j(n) < 2k(n), and set Fn = [j(n)/2k(n), (j(n) + 1)/2k(n)]. Let fn = 2k(n)/pχFn
.

Then (fn) αp-converges to 0 (take Bn = F c
n), but it does not converge to 0 almost in Lp. In order to

verify the latter, let δ = 1/103 and let Eδ be any measurable set with µ(Eδ) < 1/103. For every N ∈ N
one can always find n ≥ N such that∫

Ec
δ

fp
n dµ = 2k(n)µ(Fn ∩ Ec

δ) = 1,

therefore convergence almost in Lp does not hold.

Even though αp-convergence does not imply convergence almost in Lp, the result holds if one passes

to a subsequence.

Proposition 2.11. Let (fn) be a sequence of measurable functions that αp-converges to a measurable

function f . Then there exists a subsequence (fkn) that converges almost in Lp to f .

Proof. Let (Bn) be the sequence of measurable sets associated with the αp-convergence of (fn). For each

n ∈ N there exists kn ≥ n such that µ(Bc
kn
) < 1/2n. Set Cn =

⋂∞
i=n Bki

and notice that Cn ⊆ Cn+1

∀n ∈ N. Moreover,

µ(Cc
n) ≤

1

2n−1
→ 0 as n → ∞,

and ∫
Cn

|fkn − f |p dµ ≤
∫
Bkn

|fkn − f |p dµ → 0 as n → ∞.

Next it is shown that (fkn
) converges to f almost in Lp. Let δ > 0 and since µ(Cc

n) → 0 as n → ∞ there

exists N ∈ N such that µ(Cc
N ) < δ. Set Eδ = Cc

N and let ε > 0. There exists K ∈ N such that

∀n ≥ K

∫
Cn

|fkn
− f |p dµ < ε.

Thus, for n ≥ max{N,K}, CN ⊆ Cn and∫
Ec

δ

|fkn
− f |p dµ =

∫
CN

|fkn
− f |p dµ ≤

∫
Cn

|fkn
− f |p dµ < ε,

therefore (fkn
) converges to f almost in Lp. □

2.4. Case µ(X) < ∞.

A classical theorem of Egorov says that in a finite measure space, convergence almost everywhere implies

convergence almost uniformly. Moreover, it is clear that in a finite measure space, convergence almost

uniformly implies convergence almost in Lp. Combining this with Proposition 2.9 yields:

Proposition 2.12. Let (fn), f be measurable functions on a finite measure space. If (fn) converges to

f almost everywhere, then (fn) αp-converges to f .

3. Cauchy sequences and completeness theorems

Definition 3.1. A sequence (fn) of measurable functions is said to be:

(i) αp-Cauchy if there exists a sequence of measurable sets (Bn) with µ(Bc
n) → 0 as n → ∞ such that∫

Bn∩Bm

|fn − fm|p dµ → 0 as n,m → ∞.

(ii) Cauchy almost in Lp if for each δ > 0 there exists a measurable set Eδ with µ(Eδ) < δ such that∫
Ec

δ

|fn − fm|p dµ → 0 as n,m → ∞.



7

If a sequence (fn) αp-converges to f then it is αp-Cauchy. This follows from the inequality∫
Bn∩Bm

|fn − fm|p dµ ≤ 2p−1

∫
Bn

|fn − f |p dµ+ 2p−1

∫
Bm

|f − fm|p dµ.

It is also clear that if (fn) converges to f almost in Lp, then (fn) is Cauchy almost in Lp.

Since Cauchy sequences converge both in the Lp and measure senses, one also expects the same to

hold with both αp-convergence and convergence almost in Lp. First, it is proved that given a sequence

(fn) that is Cauchy almost in Lp, there exists a measurable function f such that (fn) converges to f

almost in Lp. Then, with this result at hand, one will be able to prove that completeness in this sense

also holds for the αp-convergence.

Theorem 3.2. Let (fn) be a sequence of measurable functions. If (fn) is Cauchy almost in Lp, then

there exists a measurable function f to which (fn) converges almost in Lp.

Proof. Assume that (fn) is Cauchy almost in Lp. Then, arguing by contradiction, one can prove that

(fn) is Cauchy in measure. This implies that there is a subsequence (fkn) and a measurable function f

such that (fkn) converges to f almost everywhere. From that one can conclude that (fkn) converges to

f almost in Lp. Indeed, given δ > 0 and Eδ with µ(Eδ) < δ such that∫
Ec

δ

|fkn − fkm | dµ → 0 as n,m → ∞,

by Fatou’s lemma one has: ∫
Ec

δ

|fkn − f | dµ =

∫
Ec

δ

lim
m→∞

|fkn − fkm | dµ

≤ lim inf
m→∞

∫
Ec

δ

|fkn
− fkm

| dµ

→ 0 as n → ∞.

The result follows by a standard argument. □

Theorem 3.3. If (fn) is a αp-Cauchy sequence, then there exists a measurable function f such that

fn
αp−−→ f.

Proof. Let (fn) be a αp-Cauchy sequence. One can prove, in a similar fashion as in Proposition 2.11,

that there exists a subsequence (fkn
) which is Cauchy almost in Lp. Then, by the previous theorem there

exists a measurable function f such that (fkn) converges to f almost in Lp. Hence, by Proposition 2.9,

(fkn) αp-converges to f . Now let ε > 0. There exist N1, N2 ∈ N such that

∀n,m ≥ N1

∫
Bn∩Bm

|fn − fm|p dµ <
ε

2p
, ∀n ≥ N2

∫
Dn

|fkn − f |p dµ <
ε

2p
,

where (Bn), (Dn) are the sequences of measurable sets associated with the αp-Cauchy property of (fn)

and the αp-convergence of (fkn
), respectively. For each n ∈ N, let Cn = Bn∩Dn∩Bkn

. Clearly, µ(Cc
n) → 0

as n → ∞. Finally, for n ≥ N = max{N1, N2} one has∫
Cn

|fn − f |p dµ ≤ 2p−1

∫
Bn∩Bkn

|fn − fkn
|p dµ+ 2p−1

∫
Dn

|fkn
− f |p dµ < ε,

which completes the proof. □

4. Convergence theorems

Proposition 4.1. Let (fn), f be measurable functions. Then

fn → f in Lp ⇔


fn

αp−−→ f,

∀(Dn)
(
µ(Dn) → 0 ⇒

∫
Dn

|fn − f |p dµ → 0
)
as n → ∞.
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Proof.

(⇒) This is clear.

(⇐) Take Dn = Bc
n, where (Bn) is the sequence of measurable sets associated with the αp-convergence

of (fn). □

Theorem 4.2. Let (fn), f be measurable functions. Then

fn
αp−−→ f ⇔


fn → f in measure,

∃δ > 0

∫
Ec

n(δ)

|fn − f |p dµ → 0 as n → ∞,

where En(δ) = {x ∈ X | |fn(x)− f(x)| ≥ δ}.

Proof.

(⇐) Simply consider Bn = Ec
n(δ).

(⇒) Due to Proposition 2.4, one already knows that αp-convergence implies convergence in measure. In

order to prove the second condition, suppose, towards a contradiction, that for every δ > 0 one has that∫
Ec

n(δ)
|fn − f |p dµ ̸→ 0. Take δ = 1 and set En = En(1). Then

∃ε > 0 ∀n ∈ N ∃kn ≥ n

∫
Ec

kn

|fkn
− f |p dµ ≥ ε.

Moreover, there exists N ∈ N such that for k ≥ N one has

µ(Bc
k) <

ε

4
,

∫
Bk

|fk − f |p dµ <
ε

4
.

Thus,

ε ≤
∫
Ec

kN

|fkN
− f |p dµ

=

∫
Ec

kN
∩BkN

|fkN
− f |p dµ+

∫
Ec

kN
∩Bc

kN

|fkN
− f |p dµ

<

∫
BkN

|fkN
− f |p dµ+ µ(Bc

kN
)

< ε/2,

a contradiction. □

Lemma 4.3. Suppose that (fn) converges to f in measure. Then the following conditions are equivalent:

(i) ∃δ > 0
∫
Ec

n(δ)
|fn − f |p dµ → 0 as n → ∞,

(ii) ∀δ > 0
∫
Ec

n(δ)
|fn − f |p dµ → 0 as n → ∞,

where En(δ) = {x ∈ X | |fn(x)− f(x)| ≥ δ}.

Proof. Suppose that there exists δ̃ > 0 such that∫
Ec

n(δ̃)

|fn − f |p dµ → 0 as n → ∞.

If 0 < δ < δ̃, then Ec
n(δ) ⊆ Ec

n(δ̃) and hence∫
Ec

n(δ)

|fn − f |p dµ ≤
∫
Ec

n(δ̃)

|fn − f |p dµ → 0 as n → ∞.

If 0 < δ̃ < δ, then∫
Ec

n(δ)

|fn − f |p dµ =

∫
Ec

n(δ)∩En(δ̃)

|fn − f |p dµ+

∫
Ec

n(δ)∩Ec
n(δ̃)

|fn − f |p dµ

< δpµ
(
En(δ̃)

)
+

∫
Ec

n(δ̃)

|fn − f |p dµ

→ 0 as n → ∞.
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□

The next concept, inspired by [8, 9], serves as an attempt to organize some of the important properties

that relevant notions of convergence satisfy (for instance, metric convergence notions):

Definition 4.4. A sequential convergence class consists of a pair (M,α), where M is a set and α is a

relation between sequences (fn) ⊆ M and elements f ∈ M denoted by fn
α−→ f, such that:

(i) If fn = f ∀n ∈ N, then fn
α−→ f ,

(ii) If fn
α−→ f and (fkn

) ⊆ (fn), then fkn

α−→ f ,

(iii) If fn ̸α−→ f, then there exists (fkn) ⊆ (fn) such that for any subsequence (hn) ⊆ (fkn), hn ̸α−→ f ,

(iv) If fn
α−→ f and ∀n ∈ N fn,k

α−→ fn, then

∀n ∈ N ∃kn ≥ n fn,kn

α−→ f.

Theorem 4.5. (M(X), αp) is a sequential convergence class.

Proof. The first and second conditions are clear, so it suffices to prove the third and fourth.

In order to prove the third condition, assume that (fn) is a sequence of measurable functions that does

not αp-converge to f . If (fn) does not converge in measure to f then

∃δ > 0 ∃ε > 0 ∀n ∈ N ∃kn ≥ n µ
(
Ekn

(δ)
)
≥ ε,

where

Ekn
(δ) = {x ∈ X | |fkn

(x)− f(x)| ≥ δ}.

It is clear that for any subsequence (hn) ⊆ (fkn
), (hn) does not converge to f in measure, and hence

(hn) does not αp-converge to f . On the other hand, if (fn) converges in measure to f , since it does not

αp-converge to f , by Theorem 4.2 and Lemma 4.3 it follows that

∃δ > 0 ∃ε > 0 ∀n ∈ N ∃kn ≥ n

∫
Ec

kn
(δ)

|fkn
− f |p dµ ≥ ε.

Consequently, if (hn) ⊆ (fkn
), then

∃δ > 0

∫
Hc

n(δ)

|hn − f |p dµ ̸→ 0,

where

Hn(δ) = {x ∈ X | |hn(x)− f(x)| ≥ δ},

hence (hn) does not αp-converge to f . This proves that (M(X), αp) satisfies the third condition of a

sequential convergence class.

Regarding the fourth condition, let (Bn) be the sequence of measurable sets associated with the αp-

convergence of (fn) and let, for each n ∈ N, (Dn,k) be the sequence of measurable sets associated with

the αp-convergence of (fn,k). Then, for each n ∈ N there exists kn ≥ n such that∫
Dn,kn

|fn,kn − fn|p dµ <
1

2n
.

Set Cn = Bn ∩Dn,kn
and let ε > 0. There exists N ∈ N such that whenever n ≥ N one has∫

Bn

|fn − f |p dµ <
ε

2p
,

∫
Dn,kn

|fn,kn
− fn|p dµ <

ε

2p
.
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Thus, for n ≥ N,∫
Cn

|fn,kn
− f |p dµ ≤ 2p−1

∫
Dn,kn

|fn,kn
− fn|p dµ+ 2p−1

∫
Bn

|fn − f |p dµ < ε,

which concludes the proof.

□

5. Preservation of convergence under composition

Definition 5.1. Let m be a notion of convergence for sequences of measurable functions. A function

φ : R → R is said to preserve m-convergence if given a measure space (X,X, µ) and a sequence (fn) of

X-measurable functions that m-converges to f, then the sequence (φ(fn)) m-converges to φ(f).

In [3] it is proved that:

(i) φ preserves almost everywhere convergence if and only if φ is continuous,

(ii) φ preserves uniform convergence, almost uniform convergence or convergence in measure if and only

if φ is uniformly continuous.

Here, one obtains a similar result as (ii) but for the Lp-convergence, convergence almost in Lp and

αp-convergence. Precisely:

Theorem 5.2. A function φ preserves Lp-convergence, convergence almost in Lp or αp-convergence if

and only if φ is Lipschitz continuous.

Before proving the theorem, one needs a local characterization of Lipschitz continuity.

Lemma 5.3. A function φ : R → R is Lipschitz continuous if and only if

∃δ > 0 ∃K > 0 ∀a, b ∈ R |a− b| < δ ⇒ |φ(a)− φ(b)| ≤ K|a− b|. (5.1)

Proof. It is clear that a Lipschitz continuous function satisfies (5.1). Assume that φ : R → R satisfies

(5.1). Let a, b ∈ R and assume without loss of generality that a < b. Let δ̃ = δ/2 and set d = |a − b|.
There exists N ∈ N0 such that d = Nδ̃ + ε for some ε ∈ [0, δ̃[ (take N as the integer part of d/δ̃). Now,

let

xn = a+ nδ̃, n = 0, 1, . . . , N,

xN+1 = a+Nδ̃ + ε = b.

Then, the triangle inequality together with (5.1) yields

|φ(a)− φ(b)| ≤
N−1∑
n=0

|φ(xn)− φ(xn+1)|+ |φ(xN )− φ(b)|

≤
N−1∑
n=0

K|xn − xn+1|+K|xN − b|

=

N−1∑
n=0

Kδ̃ +Kε

= K(Nδ̃ + ε)

= K|a− b|,

which completes the proof. □

Proof of Theorem 5.2.

(⇐) Suppose that φ is Lipschitz continuous and that fn → f in Lp. Then, there exists K > 0 such that

∀a, b ∈ R |φ(a)− φ(b)| ≤ K|a− b|,

and ∫
X

|fn − f |p dµ → 0 as n → ∞.
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Thus, ∫
X

|φ(f)n − φ(f)|p dµ ≤ Kp

∫
X

|fn − f |p dµ → 0 as n → ∞,

that is,

φ(fn) → φ(f) in Lp.

In a similar fashion, if fn → f almost in Lp or fn
αp−−→ f then φ(fn) → φ(f) almost in Lp or φ(fn)

αp−−→ φ(f),

respectively.

(⇒) Suppose that φ does not satisfy (5.1) and choose sequences (an), (bn) ⊆ R such that, for each n ∈ N,

0 < |an − bn| <
1

n1/p
, |φ(an)− φ(bn)| > n1/p|an − bn|.

Let (X,X, µ) = ([0,∞),B,L), define f : X → R by

f(x) =


b1, if 0 ≤ x < 1

|a1−b1|p ,

bn, if
∑n−1

k=1
1

|ak−bk|p + n−1
n|an−bn|p ≤ x <

∑n
k=1

1
|ak−bk|p , n ∈ N \ {1},

0, otherwise.

and, for each n ∈ N \ {1}, let fn : X → R be given by

fn(x) =

an,
∑n−1

k=1
1

|ak−bk|p + n−1
n|an−bn|p ≤ x <

∑n
k=1

1
|ak−bk|p ,

f(x), otherwise.

It holds that ∫
X

|fn − f |p dµ =
1

n
→ 0 as n → ∞,

that is, (fn) converges to f in Lp. Hence fn → f almost in Lp and fn
αp−−→ f. It remains to be shown that

(φ(fn)) does not αp-converge to φ(f) (and hence it does not converge neither almost in Lp nor in Lp).

To that end, let (Bn) be any sequence of measurable sets such that µ(Bc
n) → 0 as n → ∞, set

In =

[
n−1∑
k=1

1

|ak − bk|p
+

n− 1

n|an − bn|p
,

n∑
k=1

1

|ak − bk|p

[
,

and notice that ∫
Bn

|φ(fn)− φ(f)|p dµ =

∫
Bn∩In

|φ(an)− φ(bn)|p dµ

> n|an − bn|pµ(Bn ∩ In)

= n|an − bn|p
(
µ(In)− µ(Bc

n ∩ In)
)

= 1− n|an − bn|pµ(Bc
n ∩ In).

Now let N ∈ N be such that µ(Bc
n) < 1/2 whenever n ≥ N. Thus, for n ≥ N,∫

Bn

|φ(fn)− φ(f)|p dµ > 1− n|an − bn|pµ(Bc
n ∩ In)

> 1− µ(Bc
n)

> 1/2,

therefore (φ(fn)) does not αp-converge to φ(f) and the proof is complete. □
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