
ZERO-ELECTRON-MASS AND QUASI-NEUTRAL LIMITS

FOR BIPOLAR EULER-POISSON SYSTEMS

NUNO J. ALVES AND ATHANASIOS E. TZAVARAS

Abstract. We consider a set of bipolar Euler-Poisson equations and study two asymptotic limiting processes.

The first is the zero-electron-mass limit, which formally results in a non-linear adiabatic electron system. In a

second step, we analyse the combined zero-electron-mass and quasi-neutral limits, which together lead to the

compressible Euler equations. Using the relative energy method, we rigorously justify these limiting processes

for weak solutions of the two-species Euler-Poisson equations that dissipate energy, as well as for strong solutions

of the limit systems that are bounded away from vacuum. This justification is valid in the regime of initial

data for which strong solutions exist. To deal with the electric potential, in the first case we use elliptic theory,

whereas in the second case we employ the theory of Riesz potentials and properties of the Neumann function.

1. Introduction

Consider the following bipolar Euler-Poisson equations:

∂tρ+∇ · (ρu) = 0,

ρ∂tu+ ρ(u · ∇)u = −∇P1(ρ)− ρ∇ϕ,

∂tn+∇ · (nv) = 0,

ε
(
n∂tv + n(v · ∇)v

)
= −∇P2(n) + n∇ϕ,

−δ∆ϕ = ρ− n,

(1.1)

in ]0, T [× Ω, together with the boundary conditions

u · ν = v · ν = ∇ϕ · ν = 0,

on [0, T [ × ∂Ω, where T > 0, Ω ⊆ Rd is a smooth bounded domain, d ∈ N is the spatial dimension, and ν is

an arbitrary outer normal vector to the boundary ∂Ω. These equations describe the evolution of a two-species

fluid composed of positively and negatively charged particles subject to a self-created electric field. It is a

basic model which together with its various asymptotic limits is widely used in semiconductor theory or plasma

physics [5, 6, 21]. For theoretical results concerning existence of global solutions near equilibrium for the two-

fluid Euler-Poisson model we refer to [7, 8, 9]. It was there observed that the electrical interaction can induce

strong dispersive effects, enhance linear decay rates, and thus prevent shock formation.

System (1.1) is composed of two compressible Euler systems, with ρ, n denoting the densities, u, v the

respective linear velocities, and P1, P2 the associated pressures. One may regard ρ as the density of positively

charged ions, and n as the density of electrons. On the right-hand-side of the momentum equations one finds the

electric part of the Lorenz force. The Euler equations are coupled via a Poisson equation determining the electric

potential ϕ and the associated electric field E = −∇ϕ. The constants ε, δ > 0 represent the ratio of electron mass

to ion mass and the scaled Debye length squared, respectively. In plasma physics, the Debye length stands for

the scale over which mobile charge carriers screen out electric fields in plasmas and other conductors. One may
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view the Debye length as a length-scale over which significant charge separation occurs [5, 6]. One commonly

employs various simplified systems derived from the bipolar Euler-Poisson and obtained through various limiting

processes. A class of simplifications occurs when friction is added to (1.1); one considers the high-friction limit

which leads to the bipolar drift-diffusion equations commonly used in semiconductor modelling [21]. This limit

has been studied extensively, e.g. [17, 16, 3] and references therein.

Other limiting processes that lead to simplified systems consist of the zero-electron-mass limit and the quasi-

neutral limit. These limits are relevant for fast flows which occur in plasmas and are the subjects of study

in this work. The zero-electron-mass limit refers to the limit of the two-species Euler-Poisson system (1.1) as

ε → 0, while the quasi-neutral limit is understood to be the limit of the system (1.1) as δ → 0. When ε → 0,

the second momentum equation in (1.1) formally reduces to ∇P2(n) = n∇ϕ. Accordingly, system (1.1) reduces

to

∂tρ+∇ · (ρu) = 0,

ρ∂tu+ ρ(u · ∇)u = −∇P1(ρ)− ρ∇H ′
2(n),

−δ∆H ′
2(n) + n = ρ,

(1.2)

while the boundary conditions become

u · ν = ∇H ′
2(n) · ν = 0,

where H2 = H2(n) satisfies P ′
2(n) = nH ′′

2 (n). Going back to the relation ∇P2(n) = n∇ϕ and considering

P2(n) = n, one obtains n = n0e
ϕ, which is the case for an adiabatic electron system [11, 13], and is also known

as the Boltzmann relation [7], where n0 is the initial data. Thus, (1.2) can be regarded as a non-linear version

of the standard adiabatic electron system. To the best of the authors’ knowledge, an existence theory for (1.2)

is not yet available in the literature, therefore representing a subject for further investigation.

Furthermore, in the combined limit (ε, δ) → (0, 0) one formally obtains the following Euler equations

∂tρ+∇ · (ρu) = 0,

ρ∂tu+ ρ(u · ∇)u = −∇
(
P1(ρ) + P2(ρ)

)
,

(1.3)

with the boundary condition u · ν = 0. Regarding existence theories for Euler systems we refer to [23, 12].

A rigorous justification of the previous limiting processes is the intent of this work. Both limits have been

investigated in some contexts. In the case where the limit system is a incompressible Euler system, we refer to

[20] for the quasi-neutral limit of a single-species Euler-Poisson system in a periodic setting, and to [25] for the

zero-electron-mass limit of a two-species Euler-Poisson system in several space dimensions. Regarding the case

where the limit system is a model for compressible fluids, we refer to [22] and to [14] for the quasi-neutral limit of

a two-species Euler-Poisson system towards a single-species Euler system, in one and three spatial dimensions,

respectively. In all of the aforementioned works, the analysis is conducted in a framework of smooth solutions

with initial data close to an equilibrium state.

In the sequel, we consider weak solutions for the bipolar Euler-Poisson equations (1.1), which are reasonable

in light of the a priori energy estimates of the system. The relative energy method is used to analyse the

two limits of (1.1), first towards (1.2) when ε → 0, and then towards (1.3) as ε, δ → 0, in both cases for

strong solutions of the limiting systems. This method provides an efficient framework for limiting processes

and stability analysis [24, 19], e.g., for the relaxation limit of Euler and Euler-Poisson systems [18, 4, 3]. The

present work thus extends the applicability of the relative energy method in order to include other types of

asymptotic limits relevant in plasma physics but not necessarily related to relaxation. The zero-electron-mass

limit is considered when the mass of ions is much heavier than the mass of electrons, whereas the quasi-neutral



ASYMPTOTIC LIMITS IN BIPOLAR EULER-POISSON SYSTEMS 3

limit refers to a plasma in which the Debye length is negligible in comparison to the characteristic length of the

system. The Debye length defines the length scale on which the electric effects created by the particles in the

plasma are detected. At length scales bigger than the Debye length one observes an overall electric neutrality.

The bipolar Euler-Poisson equations (1.1) are formally analysed in Section 2. One starts by deriving (1.1)

using non-dimensional analysis. Secondly, one formally obtains the energy identity for the system and conducts

an asymptotic expansion. The local form of the relative energy identity for the system is also given, and the

section is completed with the notion of weak solutions for (1.1) which will be used in the subsequent analysis.

Then, one proceeds with the relative energy method to establish the limits of (1.1) towards (1.2) and (1.3),

this being the content of Section 3 and Section 4, respectively. This approach relies on an inequality satisfied

by relative energy for the bipolar Euler-Poisson equations, where solutions of (1.1) are either compared with

solutions of (1.2) or of (1.3); see Theorem 3.1 and Theorem 4.1. In order to perform such a comparison, one

regards the solutions of (1.2) and (1.3) as approximate solutions of (1.1); see (3.3) and (4.3).

2. The bipolar Euler-Poisson system

2.1. Nondimensionalization. As the starting point of this analysis, consider the following bipolar Euler-

Poisson equations with dimensional constituents:

∂tni +∇ · (niui) = 0,

∂t(miniui) +∇ · (miniui ⊗ ui) = −∇Pi − qini∇ϕ,

∂tne +∇ · (neue) = 0,

∂t(meneue) +∇ · (meneue ⊗ ue) = −∇pe − qene∇ϕ,

−ε0∆ϕ = qini + qene.

(2.1)

The equations above describe the evolution of an unmagnetized plasma composed of two-species of charged

particles, e.g., ions and electrons. In what follows, the S.I. units of the quantities are placed in between

parenthesis . For a species j = i, e, the density is denoted by nj (m−3), the linear velocity is represented by

uj (m · s−1), pj (kg ·m−1 · s−2) is the pressure, mj (kg) is the mass and qj (s · A) is the charge. The electric

potential created by the charged particles is denoted by ϕ (kg ·m2 ·s−3 ·A−1). The permittivity and permeability

of free space are denoted by ε0 (kg−1 · m−3 · s4 · A2) and µ0 (kg · m · s−2 · A−2), respectively. It holds that

ε0µ0 = 1/c2, with c being the speed of light.

Let e be the elementary charge and assume for simplicity that qi = −qe = e. This is the case of plasmas that

consist in hydrogen, deuterium, or a mix of deuterium and tritium [6]. Consider the scaling:

x = Lx′, t = τ0t
′,

nj = N0n
′
j , uj = v0u

′
j , pj = κBT0N0p

′
j , j = i, e,

ϕ =
κBT0
e

ϕ′,

where v0 = L/τ0, κB is the Boltzmann constant and T0 is the temperature of the system.
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After dropping the primes, setting ρ = ni, n = ne, u = ui, v = ue, Pi = P1, pe = P2, and assuming that the

pressures depend solely on the densities, one obtains the non-dimensional version of (2.1):

∂tρ+∇ · (ρu) = 0,

ζ
(
ρ∂tu+ ρ(u · ∇)u

)
= −∇P1(ρ)− ρ∇ϕ,

∂tn+∇ · (nv) = 0,

ε
(
n∂tv + n(v · ∇)v

)
= −∇P2(n) + n∇ϕ,

−δ∆ϕ = ρ− n,

where

ζ =
miv

2
0

κBT0
, ε =

mev
2
0

κBT0
, δ =

λ2D
L2

=
ε0κBT0
e2L2N0

,

with λD being the Debye length.

Note that ζ = 1 is equivalent to ε = me/mi, the ratio of electron mass to ion mass, yielding system (1.1).

2.2. Pressure and internal energy. One introduces the internal energy functions H1, H2 which are related

with the pressures P1, P2 via

rH ′′
i (r) = P ′

i (r), (2.2)

for r > 0 and i = 1, 2. Integrating the identity above yields that

rH ′
i(r) = Hi(r) + Pi(r).

The following assumptions are placed on the pressure functions:

Pi ∈ C2(]0,∞[) ∩ C([0,∞[),

P ′
i (r) > 0, |rP ′′

i (r)| ≤ k̂iP
′
i (r),

for r > 0. As for the internal energy functions one assumes that

Hi ∈ C3(]0,∞[) ∩ C([0,∞[),

lim
r→∞

r−γiHi(r) = ki(γi − 1)−1,

for some γi > 1 and ki, k̂i > 0, i = 1, 2. As an example of a pair of functions satisfying the above conditions

consider

p(r) = rγ , h(r) = (γ − 1)−1rγ , γ > 1.

2.3. Energy identity and asymptotics. In this section one derives, by exact formal computation, the energy

identity for (1.1) and produces an asymptotic analysis to make a preliminary justification of the appearance of

(1.3) from (1.1) in the combined limit.

Let (ρ, u, n, v, ϕ) solve (1.1). Taking the inner product of the second and fourth equations of (1.1) with u

and v, respectively, and using the continuity equations yields

∂t
(
1
2ρ|u|

2 +H1(ρ)
)
+∇ ·

(
1
2ρ|u|

2u+ ρH ′
1(ρ)u

)
+ ρu · ∇ϕ = 0,

and

∂t
(
ε 12n|v|

2 +H2(n)
)
+∇ ·

(
ε 12n|v|

2v + nH ′
2(n)v

)
− nv · ∇ϕ = 0.

Adding together the two previous equations and using the Poisson equation results in the local form of the

energy identity of (1.1):

∂t
(
1
2ρ|u|

2 +H1(ρ) + ε 12n|v|
2 +H2(n) + δ 1

2 |∇ϕ|
2
)
+∇ · F1 = 0, (2.3)
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where

F1 = F1(ρ, u, n, v, ϕ) =
1
2ρ|u|

2u+ ε 12n|v|
2v + ρH ′

1(ρ)u+ nH ′
2(n)v + ϕ(ρu− nv)− δϕ∇∂tϕ

is the flux of the energy. Taking ε = 0 and ϕ = H ′
2(n) in (2.3) yields the local form of the energy identity for

(1.2),

∂t
(
1
2ρ|u|

2 +H1(ρ) +H2(n) + δ 1
2 |∇H

′
2(n)|2

)
+∇ · F2 = 0, (2.4)

where

F2 = F2(ρ, u, n) =
1
2ρ|u|

2u+ ρH ′
1(ρ)u+ ρH ′

2(n)u− δH ′
2(n)∇∂tH ′

2(n)

is the flux. Furthermore, taking ε = δ = 0, ρ = n and u = v in (2.3) gives

∂t
(
1
2ρ|u|

2 +H1(ρ) +H2(ρ)
)
+∇ · F3 = 0,

which is the local form of the energy identity for system (1.3), with

F3 = F3(ρ, u) =
1
2ρ|u|

2u+ ρH ′
1(ρ)u+ ρH ′

2(ρ)u.

For solutions (ρ, u, n, v, ϕ), (ρ, u, n) and (ρ, u) of (1.1), (1.2) and (1.3), respectively, the respective total

energies H0, H∗ and HE are defined as follows:

H0 = H0(ρ, u, n, v, ϕ) =
1
2ρ|u|

2 +H1(ρ) + ε 12n|v|
2 +H2(n) + δ 1

2 |∇ϕ|
2, (2.5)

H∗ = H∗(ρ, u, n) =
1
2ρ|u|

2 +H1(ρ) +H2(n) + δ 1
2 |∇H

′
2(n)|2, (2.6)

and

HE = HE(ρ, u) =
1
2ρ|u|

2 +H1(ρ) +H2(ρ). (2.7)

Now, one performs an asymptotic analysis to the bipolar Euler-Poisson equations. Set

m = ρu, µ = nv,

rewrite (1.1) as follows

∂tρ+∇ ·m = 0,

∂tm+∇ ·
(m⊗m

ρ

)
+∇P1(ρ) + ρ∇ϕ = 0,

∂tn+∇ · µ = 0,

ε
(
∂tµ+∇ ·

(µ⊗ µ

n

))
+∇P2(n)− n∇ϕ = 0,

−δ∆ϕ = ρ− n,

(2.8)

and introduce the asymptotic expansions in ε :

ρ = ρ0 + ερ1 + ε2ρ2 + . . . ,

m = m0 + εm1 + ε2m2 + . . . ,

n = n0 + εn1 + ε2n2 + . . . ,

µ = µ0 + εµ1 + ε2µ2 + . . . ,

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + . . . .
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Expanding each one of the terms of (2.8), after gathering the O(1) terms it holds that

∂tρ0 +∇ ·m0 = 0,

∂tm0 +∇ ·
(m0 ⊗m0

ρ0

)
+∇(ρ0) + ρ0∇ϕ0 = 0,

∂tn0 +∇ · µ0 = 0,

∇P2(n0) = n0∇ϕ0,

−δ∆ϕ0 = ρ0 − n0,

which can be solved by first obtaining ρ0,m0, n0 from

∂tρ0 +∇ ·m0 = 0,

∂tm0 +∇ ·
(m0 ⊗m0

ρ0

)
+∇P1(ρ0) + ρ0∇H ′

2(n0) = 0,

−δ∆H ′
2(n0) + n0 = ρ0,

(2.9)

and then setting

ϕ0 = H ′
2(n0), µ0 = m0 − δ∇∂tϕ0.

Furthermore, expanding each one of the terms in the energy identity (2.3) one obtains that (ρ0,m0, n0, µ0, ϕ0)

satisfy the following energy identity:

∂t

(1
2

|m0|2

ρ0
+H1(ρ0) +H2(n0) + δ

1

2
|∇ϕ0|2

)
+∇ · F0 = 0, (2.10)

where

F0 =
1

2

|m0|2

ρ20
m0 +H ′

1(ρ0)m0 +H ′
2(n0)µ0 + ϕ0(m0 − µ0)− δϕ0∇∂tϕ0.

Next, one makes a subsidiary expansion in δ of (ρ0,m0, n0),

ρ0 = ρ00 + δρ01 + δ2ρ02 + . . . ,

m0 = m00 + δm01 + δ2m02 + . . . ,

n0 = n00 + δn01 + δ2n02 + . . . ,

and plugs it in (2.9). Gathering the leading order terms one obtains that they satisfy

∂tρ00 +∇ ·m00 = 0,

∂tm00 +∇ ·
(m00 ⊗m00

ρ00

)
+∇P1(ρ00) + ρ00∇H ′

2(n00) = 0,

n00 = ρ00,

which is equivalent to (1.3) by (2.2). Finally, one expands the terms in the energy identity (2.10) and gathers

the leading order terms to obtain

∂t

(1
2

|m00|2

ρ0
+H1(ρ00) +H2(n00)

)
+∇ · F00 = 0, (2.11)

where

F00 =
1

2

|m00|2

ρ20
m00 +H ′

1(ρ00)m00 +H ′
2(n00)µ00 + ϕ00(m00 − µ00).

Since µ00 = m00, one has that identity (2.11) is in fact the local form of the energy identity for system (1.3).
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2.4. Relative energy identity. This section presents the relative energy identity for solutions of (1.1). The

derivation is conducted via an exact formal calculation, similar with the formal computations in [3]. Given a

pair of smooth solutions, (ρ, u, n, v, ϕ) and (ρ̄, ū, n̄, v̄, ϕ̄), of (1.1), one uses the relative energy to compare them.

In this case, the relative energy Ĥ takes the form

Ĥ = Ĥ(ρ, u, n, v, ϕ|ρ̄, ū, n̄, v̄, ϕ̄)

= 1
2ρ|u− ū|2 +H1(ρ|ρ̄) + ε 12n|v − v̄|2 +H2(n|n̄) + δ 1

2 |∇(ϕ− ϕ̄)|2,
(2.12)

where for a function F = F (ρ), F (ρ|ρ̄) is defined as

F (ρ|ρ̄) = F (ρ)− F (ρ̄)− F ′(ρ̄)(ρ− ρ̄).

Taking the time derivative of Ĥ renders the local form of relative energy identity for (1.1):

∂tĤ+∇ · F̂ = Σ̂1 + Σ̂2 + Σ̂∗, (2.13)

where the relative flux F̂ is given by

F̂ = 1
2ρ|u− ū|2u+ ρ

(
H ′

1(ρ)−H ′
1(ρ̄)

)
(u− ū) +H1(ρ|ρ̄)ū

+ ε 12n|v − v̄|2v + n
(
H ′

2(n)−H ′
2(n̄)

)
(v − v̄) +H2(n|n̄)v̄

+ (ϕ− ϕ̄)(ρu− nv − ρ̄ū+ n̄v̄)− δ(ϕ− ϕ̄)∇∂t(ϕ− ϕ̄),

and the remaining terms Σ̂i, i = 1, 2, ∗ are as follows

Σ̂1 = −ρ∇ū : (u− ū)⊗ (u− ū)− εn∇v̄ : (v − v̄)⊗ (v − v̄),

Σ̂2 = −(∇ · ū)P1(ρ|ρ̄)− (∇ · v̄)P2(n|n̄),

Σ̂∗ =
(
(ρ− ρ̄)ū− (n− n̄)v̄

)
· ∇(ϕ− ϕ̄).

(2.14)

The first term above, Σ̂1, originates from the contribution of the relative kinetic energy, while the other two

terms, Σ̂2 and Σ̂3, appear from the evolution of the relative potential energy. This computation can be carried

out either by direct exact calculation, considering the system of equations satisfied by the difference of the two

solutions, or by employing a functional abstract formalism; for details see [3].

The relative energy identity for (1.1) is then obtained by integrating the identity (2.13) over space:

d

dt
Φ =

∫
Ω

Σ̂1 + Σ̂2 + Σ̂∗ dx,

where Φ is defined as:

Φ = Φ(t) =

∫
Ω

Ĥ(ρ, u, n, v, ϕ|ρ̄, ū, n̄, v̄, ϕ̄) dx, (2.15)

where Ĥ is as (2.12). This function serves as a tool for comparing solutions of (1.1) with solutions of (1.2) and

(1.3) in the subsequent sections of the manuscript.

2.5. Dissipative weak solutions. Here, the notion of weak solutions to the equations (1.1) is prescribed. A

tuple (ρ, u, n, v, ϕ) such that the densities ρ, n are non-negative and

ρ ∈ C
(
[0, T [;Lγ1(Ω)

)
, n ∈ C

(
[0, T [;Lγ2(Ω)

)
, γ = min{γ1, γ2} > 1,

the momenta ρu, nv belong to C
(
[0, T [;L1(Ω,Rd)

)
, and additionally

ρ|u|2, n|v|2, ρ∇ϕ, n∇ϕ ∈ L1(]0, T [×Ω),

where ϕ solves −δ∆ϕ = ρ− n, is a weak solution of (1.1) if:
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(i) (ρ, u, n, v, ϕ) satisfies (1.1) in the following weak sense:

−
∫ T

0

∫
Ω

(∂tφ)ρ dxdt−
∫ T

0

∫
Ω

∇φ · (ρu) dxdt−
∫
Ω

φρ
∣∣
t=0

dx = 0,

−
∫ T

0

∫
Ω

∂tφ̃ · (ρu) dxdt−
∫ T

0

∫
Ω

∇φ̃ : ρu⊗ u dxdt

−
∫ T

0

∫
Ω

(∇ · φ̃)p1(ρ) dxdt−
∫
Ω

φ̃ · (ρu)
∣∣
t=0

dx

=−
∫ T

0

∫
Ω

φ̃ · (ρ∇ϕ) dxdt,

−
∫ T

0

∫
Ω

(∂tψ)ndxdt−
∫ T

0

∫
Ω

∇ψ · (nv) dxdt−
∫
Ω

ψn
∣∣
t=0

dx = 0,

−
∫ T

0

∫
Ω

ε∂tψ̃ · (nv) dxdt−
∫ T

0

∫
Ω

ε∇ψ̃ : nv ⊗ v dxdt

−
∫ T

0

∫
Ω

(∇ · ψ̃)p2(n) dxdt−
∫
Ω

εψ̃ · (nv)
∣∣
t=0

dx

=

∫ T

0

∫
Ω

ψ̃ · (n∇ϕ) dxdt,

for every Lipschitz test functions φ,ψ : [0, T [ × Ω̄ → R, φ̃, ψ̃ : [0, T [ × Ω̄ → Rd compactly supported in

time, and such that φ̃ · ν = ψ̃ · ν = 0 on [0, T [× ∂Ω for any outer normal vector to the boundary ν,

(ii) (ρ, u, n, v, ϕ) conserves mass: ∫
Ω

ρ dx =

∫
Ω

ndx =M <∞, 0 ≤ t < T,

(iii) (ρ, u, n, v, ϕ) has finite total energy:

sup
[0,T [

∫
Ω

H0(ρ, u, n, v, ϕ) dx <∞,

where H0 is given by (2.5). Solutions of (1.1) are dependent on ε and δ, i.e.,

(ρ, u, n, v, ϕ) = (ρε,δ, uε,δ, nε,δ, vε,δ, ϕε,δ).

Nevertheless, we omit this dependence for simplicity.

Moreover, a weak solution (ρ, u, n, v) of (1.1) is dissipative if
√
ρu,

√
nv,∇ϕ ∈ C

(
[0, T [;L2(Ω,Rd)

)
and

−
∫ T

0

∫
Ω

H0(ρ, u, n, v, ϕ) θ̇ dxdt ≤
∫
Ω

H0(ρ, u, n, v, ϕ) θ dx
∣∣∣
t=0

(2.16)

for all compactly supported and non-negative θ belonging to W 1,∞([0, T [).

Fixing t ∈ [0, T [ and choosing θ above as

θ(s) =


1 for 0 ≤ s < t,

t− s

τ
+ 1 for t ≤ s < t+ τ,

0 for t+ τ ≤ s < T,

(2.17)
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for some positive τ such that τ + t < T, after letting τ → 0 expression (2.16) becomes∫
Ω

H0(ρ, u, n, v, ϕ) dx
∣∣∣s=t

s=0
≤ 0,

i.e., the energy is a non-increasing function of time.

3. Zero-electron-mass limit

In this section, one evaluates the limit of (1.1) towards (1.2) as ε→ 0. For simplicity, consider δ = 1.

First, one describes the notion of a strong solution for (1.2). A bounded Lipschitz triplet (ρ̄, ū, n̄) with

positive densities is a strong solution of (1.2) if:

(i) (ρ̄, ū, n̄) satisfies

∂tρ̄+∇ · (ρ̄ū) = 0,

∂tū+ ū · ∇ū = −∇
(
H ′

1(ρ̄) + H̄ ′
2(n̄)

)
,

−∆H ′
2(n̄) + n̄ = ρ̄,

for almost every (t, x) ∈ ]0, T [× Ω and

ū · ν = ∇H ′
2(n̄) · ν = 0 on [0, T [× ∂Ω,

(ii) for each t ∈ [0, T [ and each κ > 0 such that t+ κ < T, the functions φ, φ̃ given by

φ =
(
− 1

2 |ū|
2 +H ′

1(ρ̄) +H ′
2(n̄)

)
θ, φ̃ = ūθ

are Lipschitz continuous, where θ is given by (2.17).

Regarding the initial conditions, a strong solution (ρ̄, ū, n̄) is assumed to originate from initial data (ρ̄0, ū0, n̄0)

that satisfy ∫
Ω

ρ̄0 dx =

∫
Ω

n̄0 dx = M̄ <∞,

∫
Ω

H∗(ρ̄0, ū0, n̄0) dx <∞, (3.1)

where H∗ is as (2.6). Moreover, for i, j = 1, . . . , d, the derivatives

∂xi
ρ̄, ∂tρ̄, ∂2xixj

ρ̄,

∂xi
ū, ∂tū, ∂2xixj

ū,

∂xi n̄, ∂tn̄, ∂2xixj
n̄ , ∂t∂xi n̄, ∂2t n̄, ∂t∂

2
xixj

n̄, ∂2t ∂xi n̄,

are assumed to be bounded in [0, T [× Ω.

A strong solution of (1.3) satisfies the energy equation:

d

dt

∫
Ω

H∗(ρ̄, ū, n̄) dx = 0.

This equation is obtained by integrating expression (2.4), and it implies that (3.1) holds for any t ∈ [0, T [.

Furthermore, one considers strong solutions that are bounded away from vacuum, i.e.,

A1 ≤ ρ̄ ≤ B1, A2 ≤ n̄ ≤ B2, (3.2)

for some A1, A2 > 0 and B1, B2 <∞.
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In this section, using the relative energy method, one compares a weak solution (ρ, u, n, v, ϕ) of (1.1) satisfying

(2.16) with a strong solution (ρ̄, ū, n̄) of (1.2) satisfying (3.2). In order to do so, one regards the strong solution

of (1.2) as an approximate solution of (1.1) by placing

v̄ =
ρ̄ū−∇∂tH ′

2(n̄)

n̄
,

ϕ̄ = H ′
2(n̄).

One easily checks that ∂tn̄+∇ · (n̄v̄) = 0 and n̄v̄ · ν = 0 on [0, T [× ∂Ω.

Thus, the strong solution, henceforth denoted by (ρ̄, ū, n̄, v̄, ϕ̄), satisfies the following approximate equations:

∂tρ̄+∇ · (ρ̄ū) = 0,

ρ̄∂tū+ ρ̄(ū · ∇)ū = −∇P1(ρ̄)− ρ∇ϕ̄,

∂tn̄+∇ · (n̄v̄) = 0,

ε
(
n̄∂tv̄ + n̄(v̄ · ∇)v̄

)
= −∇P2(n̄) + n̄∇ϕ̄+ εē,

−∆ϕ̄ = ρ̄− n̄,

(3.3)

where the error ē is given by

ē = n̄∂tv̄ + n̄(v̄ · ∇)v̄.

Recall the relative energy Φ given by (2.15). The main result of this section is a stability estimate for Φ

evaluated in a weak solution of (1.1) and a strong solution of (1.2). The proof will be given in the subsequent

two sections of the manuscript.

Theorem 3.1. Assume that d ≥ 2. Given (ρ, u, n, v, ϕ), a weak solution of (1.1) satisfying (2.16) and with

γ ≥ 2− 1
d , and given (ρ̄, ū, n̄, v̄, ϕ̄), a strong solution of (1.2) satisfying (3.2), there exists a positive constant C

such that

Φ(t) ≤ eCT
(
Φ(0) + ε

)
∀t ∈ [0, T [. (3.4)

Thus, as ε tends to zero, if Φ(0) → 0, then

sup
t∈[0,T [

Φ(t) → 0.

3.1. Relative energy inequality. The first step in order to establish Theorem 3.1 is an inequality satisfied

by Φ. This inequality, called the relative energy inequality, is obtained considering the solutions detailed in

Sections 2.5 and 3.

Proposition 3.2. Given (ρ, u, n, v, ϕ), a weak solution of (1.1) satisfying (2.16), and given (ρ̄, ū, n̄, v̄, ϕ̄), a

strong solution of (1.2), the function Φ satisfies:

Φ(t)− Φ(0) ≤ Σ1(t) + Σ2(t) + Σ3(t) + Σ∗(t) ∀ t ∈ [0, T [, (3.5)

where

Σi(t) =

∫ t

0

∫
Ω

Σ̂i dxds

with Σ̂i as in (2.14) for i = 1, 2, ∗, and

Σ3(t) = −
∫ t

0

∫
Ω

ε
n

n̄
ē · (v − v̄) dxds.
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Proof. This derivation is very similar to the proof of [3, Proposition 4.4], so most of the details are omitted.

Proceeding as in [3], one obtains that

Φ(t)− Φ(0) ≤ Σ1(t) + Σ2(t) + Σ3(t)

+

∫ t

0

∫
Ω

−(∂sϕ̄)(ρ− n− ρ̄+ n̄) + (ρū− nv̄) · ∇(ϕ− ϕ̄) dxds.

Now, set f = ρ− n and f̄ = ρ̄− n̄. One wishes to prove that∫
Ω

−(f − f̄)(∂tϕ̄) dx =

∫
Ω

−(ϕ− ϕ̄)(∂tf̄) dx. (3.6)

Let (fk) ⊆ C∞
c (Ω) be such that fk → f in Lγ(Ω) as k → ∞, and let ϕk be such that −∆ϕk = fk. Then,∫

Ω

−(fk − f̄)(∂tϕ̄) dx =

∫
Ω

∆(ϕk − ϕ̄)(∂tϕ̄) dx =

∫
Ω

−(ϕk − ϕ̄)(∂tf̄) dx.

Letting k → ∞ above yields the desired identity. Indeed,∣∣∣ ∫
Ω

(fk − f̄)(∂tϕ̄) dx−
∫
Ω

(f − f̄)(∂tϕ̄) dx
∣∣∣ ≤ ∫

Ω

|(fk − f)(∂tϕ̄)| dx ≤ C∥fk − f∥Lγ(Ω) → 0,

and by standard elliptic theory one derives∣∣∣ ∫
Ω

(ϕk − ϕ̄)(∂tf̄) dx−
∫
Ω

(ϕ− ϕ̄)(∂tf̄) dx
∣∣∣ ≤ C∥ϕk − ϕ∥Lγ(Ω)

≤ C∥ϕk − ϕ∥W 2,γ(Ω) ≤ C∥fk − f∥Lγ(Ω) → 0,

Therefore, (3.6) holds and, together with the continuity equations satisfied by the strong solution, implies that∫
Ω

−(∂sϕ̄)(ρ− n− ρ̄+ n̄) + (ρū− nv̄) · ∇(ϕ− ϕ̄) dx =

∫
Ω

Σ̂∗ dx,

which concludes the proof. □

3.2. Bounds for the relative energy. With the same assumptions as those in Theorem 3.1, it holds that

Σi(t) ≤ C

∫ t

0

Φ(s) ds, i = 1, 2, ∗,

Σ3(t) ≤ Cεt+ C

∫ t

0

Φ(s) ds.

(3.7)

Indeed, the first three terms are treated as in [3, Lemma 4.5, Lemma 4.6, Lemma 4.8], respectively. For the

remaining term, Σ∗, we state a lemma which serves as the counterpart of [3, Lemma 4.7] for the present case.

Lemma 3.3. Under the conditions of Theorem 3.1, there exists a positive constant C such that

(i) if γ ≥ 2: ∫
Ω

(
(ρ− ρ̄)ū− (n− n̄)v̄

)
· ∇(ϕ− ϕ̄) dx ≤ C

∫
Ω

|ρ− ρ̄|2 + |n− n̄|2 + |∇(ϕ− ϕ̄)|2 dx

≤ C

∫
Ω

H1(ρ|ρ̄) +H2(n|n̄) + |∇(ϕ− ϕ̄)|2 dx.
(3.8)

(ii) if 2− 1
d ≤ γ < 2:∫

Ω

(
(ρ− ρ̄)ū− (n− n̄)v̄

)
· ∇(ϕ− ϕ̄) dx ≤ C

(∫
Ω

(|ρ− ρ̄|+ |n− n̄|)q dx
) 2

q

≤ C

∫
Ω

H1(ρ|ρ̄) +H2(n|n̄) dx,
(3.9)

where q = 2
3−γ .
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It is clear that the condition in (3.7) for Σ∗ follows from this lemma. The proof of the lemma is identical

to the proof of [3, Lemma 4.7], except for the first inequality of (3.9), which we prove here. Assume that

2− 1
d ≤ γ < 2 and let q = 2

3−γ , q
′ = q

q−1 , and q
∗ = dq

d−q . Since 2− 1
d ≤ γ < 2, then 1 < q < γ < 2, q < q′ ≤ q∗,

and the following Sobolev imbedding holds [1]:

W 1,q(Ω) → Lq′(Ω).

Combining the above imbedding with Hölder’s inequality yields that∫
Ω

(
(ρ− ρ̄)ū− (n− n̄)v̄

)
· ∇(ϕ− ϕ̄) dx ≤ C∥|ρ− ρ̄|+ |n− n̄|∥Lq(Ω)∥∇(ϕ− ϕ̄)∥W 1,q(Ω).

Now, using elliptic Lq regularity theory, one deduces that

∥∇(ϕ− ϕ̄)∥W 1,q(Ω) ≤ ∥ϕ− ϕ̄∥W 2,q(Ω) ≤ C ∥ρ− ρ̄− n+ n̄∥Lq(Ω),

whence ∫
Ω

(
(ρ− ρ̄)ū− (n− n̄)v̄

)
· ∇(ϕ− ϕ̄) dx ≤ C∥|ρ− ρ̄|+ |n− n̄|∥2Lq(Ω),

as desired.

Combining (3.5) with (3.7) results in

Φ(t)− Φ(0) ≤ C

∫ t

0

Φ(s) ds+ Cεt ∀t ∈ [0, T [,

from which (3.4) follows by Gronwall’s inequality.

Remark 3.4. In [3] one uses the Neumann function to represent the solution of the Poisson equation, which

is not the case in this section. There, the counterpart of the first inequality in (3.9) is obtained combining the

properties of the Neumann function with a classical estimate on Riesz potentials. Those ideas will also be used

in the last part of the present work; see Section 4.1.

4. Joint zero-electron-mass and quasi-neutral limits

In this section, one analyses the limit of (1.1) towards (1.3) as ε, δ → 0. First, one describes the notion of

strong solution (ρ̄, ū) for the Euler system (1.3). A bounded Lipschitz pair (ρ̄, ū) with ρ̄ > 0 is a strong solution

of (1.3) if:

(i) (ρ̄, ū) satisfies

∂tρ̄+∇ · (ρ̄ū) = 0,

∂tū+ ū · ∇ū = −∇
(
H ′

1(ρ̄) +H ′
2(ρ̄)

)
,

for almost every (t, x) ∈ ]0, T [× Ω and

ū · ν = 0 on [0, T [× ∂Ω,

(ii) for each t ∈ [0, T [ and each κ > 0 such that t+ κ < T, the functions φ, φ̃ given by

φ =
(
− 1

2 |ū|
2 +H ′

1(ρ̄) +H ′
2(ρ̄)

)
θ, φ̃ = ūθ

are Lipschitz continuous, where θ is given by (2.17).

Regarding the initial conditions, a strong solution (ρ̄, ū) is assumed to originate from initial data (ρ̄0, ū0)

satisfying ∫
Ω

ρ̄0 dx = M̄ <∞,∫
Ω

HE(ρ̄0, ū0) dx <∞, (4.1)
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where HE is given by (2.7). Moreover, for i, j = 1, . . . , d, the derivatives

∂xi
ρ̄, ∂xi

ū, ∂2xixj
ρ̄, ∂2xixj

ū

are assumed to be bounded in [0, T [× Ω.

A strong solution of (1.3) satisfies
d

dt

∫
Ω

HE(ρ̄, ū) dx = 0,

which implies that (4.1) holds for any t ∈ [0, T [. Furthermore, one considers strong solutions that are bounded

away from vacuum, i.e.,

A ≤ ρ̄ ≤ B, (4.2)

for some A > 0 and B <∞.

Using the relative energy method, one compares a weak solution (ρ, u, n, v, ϕ) of (1.1) satisfying (2.16) with

a strong solution (ρ̄, ū) of (1.3) satisfying (4.2). In order to do so, one regards the strong solution as an

approximate solution of (1.1) by placing

n̄ = ρ̄,

v̄ = ū,

ϕ̄ = H ′
2(ρ̄).

Thus, the strong solution, henceforth denoted by (ρ̄, ū, n̄, v̄, ϕ̄), satisfies the following approximate system:

∂tρ̄+∇ · (ρ̄ū) = 0,

ρ̄∂tū+ ρ̄(ū · ∇)ū = −∇P1(ρ̄)− ρ∇ϕ̄,

∂tn̄+∇ · (n̄v̄) = 0,

ε
(
n̄∂tv̄ + n̄(v̄ · ∇)v̄)

)
= −∇P2(n̄) + n̄∇ϕ̄+ εē,

−δ∆ϕ̄ = ρ̄− n̄+ δē0,

(4.3)

where the errors ē, ē0 are given by

ē = n̄∂tv̄ + n̄(v̄ · ∇)v̄, ē0 = −∆ϕ̄.

Once again, one utilizes the relative energy function Φ given by (2.15) to compare the two considered solutions

of the different systems. In this case, one compares a weak solution (ρ, u, n, v, ϕ) of (1.1) and a strong solution

(ρ̄, ū, n̄, v̄, ϕ̄) of (1.3). Moreover, here one considers the representation formula using the Neumann function N

for the solution of −δ∆ϕ = ρ− n:

ϕ = N ∗
(ρ− n

δ

)
,

see [15]. The choice of this representation formula together with the theory of Riesz potentials yield two

integration by parts formulas that are crucial to prove the main result of this section. The result, a stability

estimate satisfied by Φ, is as follows:

Theorem 4.1. Assume that d ≥ 3. Given (ρ, u, n, v), ϕ = N ∗ (ρ − n)/δ, a weak solution of (1.1) satisfying

(2.16) and with γ ≥ 2d
d+1 , and given (ρ̄, ū, n̄, v̄, ϕ̄), a strong solution of (1.3) satisfying (4.2), there exists a

positive constant C such that

Φ(t) ≤ eCT
(
Φ(0) + ε+ δ

)
∀t ∈ [0, T [. (4.4)

Thus, if Φ(0) → 0 as (ε, δ) → (0, 0), then

sup
t∈[0,T [

Φ(t) → 0 as (ε, δ) → (0, 0).
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The remainder of the manuscript is devoted to giving a proof of the previous result.

4.1. Integration by parts formulas. Before stating and proving the integration by parts formulas that will

be used in the subsequent analysis, one needs to recall some properties of the Neumann function and the notion

of Riesz potentials. These will be crucial to handle the terms containing the electric potential ϕ.

The Neumann function N provides a representation formula for the solution of the problem{−∆ϕ = f in Ω,

∇ϕ · ν = 0 on ∂Ω,

being the counterpart of the Newtonian kernel for the case of a bounded domain of Rd with smooth boundary

and d ≥ 3 [15]. Its relevant properties which will be used are the following:

(i) N is smooth off the diagonal {(x, x) | x ∈ Ω̄},
(ii) N is symmetric,

(iii) N(x, z) ≤ C|x− z|2−d,

(iv) |∇xN(x, z)| ≤ C|x− z|1−d,

where C is a positive constant.

The Riesz potential of order α ∈ ]0, d[, Iαf , of a function f : Rd → R is given by

Iαf(x) =

∫
Rd

f(z)|x− z|α−d dz.

If f ∈ Lγ(Rd) with 1 < γ < d/α, then one has [10]:

∥Iαf∥
L

dγ
d−αγ (Rd)

≤ C∥f∥Lγ(Rd), (4.5)

for some constant C > 0.

Combining the properties of the Neumann function with estimate (4.5) yields two integration by parts

formulas that will be essential in the subsequent analysis. The first formula is proved in [3, Proposition 4.2].

Proposition 4.2. Let f, g ∈ Lγ(Ω) and δ > 0, and consider ϕ = N ∗ f/δ, φ = N ∗ g/δ, ∇ϕ = ∇xN ∗ f/δ, and
∇φ = ∇xN ∗ g/δ. If γ ≥ 2d

d+2 , then ϕ, φ ∈ L
2d

d−2 (Ω), ∇ϕ,∇φ ∈ L2(Ω,Rd), and∫
Ω

δ∇ϕ · ∇φdx =

∫
Ω

fφ dx =

∫
Ω

gϕ dx =

∫
Ω

∫
Ω

f(x)N(x, y)g(y) dxdy.

In particular, for any φ̄ ∈W 1,∞(Ω) it holds that∫
Ω

φ̄f dx =

∫
Ω

δ∇φ̄ · ∇ϕdx. (4.6)

The next formula is deduced in [2, Proposition 4.3], where Ω and the Neumann function are substituted by

the whole space Rd and the Newtonian kernel, respectively. The proof in the present case is essentially the

same, and is therefore omitted.

Proposition 4.3. Under the same conditions of Proposition 4.2, if γ ≥ 2d
d+1 , then f∇ϕ ∈ L1(Ω,Rd) and for

any ū ∈W 1,∞(Ω,Rd) with ū · ν = 0 on ∂Ω it holds that∫
Ω

f∇ϕ · ū dx =

∫
Ω

δ∇ū : ∇ϕ⊗∇ϕdx−
∫
Ω

δ(∇ · ū) 12 |∇ϕ|
2 dx. (4.7)

Proof. We give a proof of the first assertion, i.e., f∇ϕ ∈ L1(Ω,Rd). Set γ0 = 2d
d+1 and note that f ∈ Lγ0(Ω).

Moreover, it is clear that

|∇ϕ(x)| ≤ CI1(|f̃ |)(x), x ∈ Ω,
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where f̃ is the zero extension of f to all of Rd. Consequently, by (4.5),

∥f∇ϕ∥L1(Ω) ≤ ∥f∥Lγ0 (Ω)∥∇ϕ∥Lγ′
0 (Ω)

≤ C∥f∥Lγ0 (Ω)∥I1(|f̃ |)∥Lγ′
0 (Ω)

≤ C∥f∥Lγ0 (Ω)∥I1(|f̃ |)∥
L

dγ0
d−γ0 (Rd)

≤ C∥f∥Lγ0 (Ω)∥f̃∥Lγ0 (Rd)

= C∥f∥2Lγ0 (Ω),

from which the desired conclusion follows.

□

4.2. Relative energy inequality. In this section, one presents an inequality satisfied by Φ for the notions of

solutions detailed in Section 2.5 and Section 4. This inequality is the relative energy inequality for the present

case.

Proposition 4.4. Given (ρ, u, n, v), ϕ = N ∗ (ρ − n)/δ, a weak solution of (1.1) satisfying (2.16) and with

γ ≥ 2d
d+2 , and given (ρ̄, ū, n̄, v̄, ϕ̄), a strong solution of (1.3), the function Φ satisfies:

Φ(t)− Φ(0) ≤ Σ1(t) + Σ2(t) + Σ3(t) + Σ4(t) + Σ5(t) + Σ6(t) ∀t ∈ [0, T [, (4.8)

where Σi, i = 1, 2, 3 are as in (3.5) and

Σ4(t) = −
∫ t

0

∫
Ω

δ(∂sϕ̄)∆ϕ̄ dxds,

Σ5(t) = −
∫ t

0

∫
Ω

(∂sϕ̄+∇ϕ̄ · ū)(ρ− n) dxds,

Σ6(t) =

∫ t

0

∫
Ω

(ρ− n)∇ϕ · ū dxds.

Proof. The inequality is obtained using the same methodology as in the proof of [3, Proposition 4.4], where in

this case ρ̄ = n̄ , ū = v̄ and the energy equality satisfied by the strong solution is∫
Ω

HE(ρ̄, ū) + ε 12 n̄|v̄|
2 − δ 1

2 |∇ϕ̄|
2 dx

∣∣∣s=t

s=0
=

∫ t

0

∫
Ω

εv̄ · ē dxds+
∫ t

0

∫
Ω

δ(∂sϕ̄)∆ϕ̄ dxds,

since ∫ t

0

∫
Ω

εv̄ · ē dxds =
∫
Ω

1
2 n̄|v̄|

2 dx
∣∣∣s=t

s=0
,

and

−
∫ t

0

∫
Ω

δ(∂sϕ̄)∆ϕ̄ dxds =

∫
Ω

δ 1
2 |∇ϕ̄|

2 dx
∣∣∣s=t

s=0
,

where HE is as (2.7).

□

4.3. Bounds for the relative energy. Under the same conditions as Theorem 4.1 it holds that:

Σi(t) ≤ C

∫ t

0

Φ(s) ds, i = 1, 2,

Σ3(t) ≤ Cεt+ C

∫ t

0

Φ(s) ds,

Σ4(t) ≤ Cδt,

Σj(t) ≤ Cδt+ C

∫ t

0

Φ(s) ds, j = 5, 6.

(4.9)
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The first three terms are treated in the same fashion as in Section 3.2. Moreover,

Σ4(t) ≤ ∥(∂sϕ̄)∆ϕ̄∥∞
∫ t

0

∫
Ω

δ dxds ≤ Cδt.

Using the integration by parts formula (4.6) one obtains

Σ5(t) = −
∫ t

0

∫
Ω

δ∇(∂sϕ̄+∇ϕ̄ · ū) · ∇ϕdxds

= −
∫ t

0

∫
Ω

δ∇(∂sϕ̄+∇ϕ̄ · ū) · ∇(ϕ− ϕ̄) dxds−
∫ t

0

∫
Ω

δ∇(∂sϕ̄+∇ϕ̄ · ū) · ∇ϕ̄ dxds

≤
∫ t

0

∫
Ω

δ 1
2 |∇(∂sϕ̄+∇ϕ̄ · ū)|2 + δ 1

2 |∇(ϕ− ϕ̄)|2 dxds+ ∥∇(∂sϕ̄+∇ϕ̄ · ū) · ∇ϕ̄∥∞
∫ t

0

∫
Ω

δ dxds

≤ Cδt+ C

∫ t

0

Φ(s) ds,

whereas the integration by parts formula (4.7) yields

Σ6(t) =

∫ t

0

∫
Ω

δ∇ū : ∇ϕ⊗∇ϕdxds−
∫ t

0

∫
Ω

δ(∇ · ū) 12 |∇ϕ|
2 dxds

≤ C

∫ t

0

∫
Ω

δ|∇ϕ|2 dxds

= C

∫ t

0

∫
Ω

δ|∇(ϕ− ϕ̄) +∇ϕ̄|2 dxds

= C

∫ t

0

∫
Ω

δ|∇(ϕ− ϕ̄)|2 + δ∇(ϕ− ϕ̄) · ∇ϕ̄+ δ|∇ϕ̄|2 dxds

≤ Cδt+ C

∫ t

0

Φ(s) ds.

Combining (4.8) with (4.9) results in

Φ(t)− Φ(0) ≤ C

∫ t

0

Φ(s) ds+ C(ε+ δ)t, t ∈ [0, T [,

from which (4.4) follows by Gronwall’s inequality.

Acknowledgments. NJA would like to thank Rogério Jorge for many useful conversations regarding the

physics of the problem. This work was completed while NJA was a PhD student at King Abdullah University

of Science and Technology (KAUST).

References

[1] Adams, R. A., & Fournier, J. J.: Sobolev spaces. Elsevier (2003)

[2] Alves, N. J.: The role of Riesz potentials in the weak-strong uniqueness for Euler-Poisson systems. Applicable Analysis (2023)

[3] Alves, N. J., & Tzavaras, A. E.: The relaxation limit of bipolar fluid models. Discrete & Continuous Dynamical Systems, 42(1),

211-237 (2022)
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