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Abstract. In this work we employ the relative energy method to obtain a weak-strong

uniqueness principle for a Euler-Riesz system, as well as to establish its convergence in

the high-friction limit towards a gradient flow equation. The main technical challenge in

our analysis is addressed using a specific case of a Hardy-Littlewood-Sobolev inequality

for Riesz potentials.

1. Introduction

In this work we consider the following Euler-Riesz system in ]0, T [× Ω:∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ργ + κρ∇W ∗ ρ = −νρu,
(1.1)

where 0 < T < ∞ and Ω is either the d-dimensional torus Td or a smooth bounded domain

of Rd, d ≥ 1. In the case of a bounded domain, we consider the following no-flux boundary

conditions:

u · n = 0 on [0, T [× ∂Ω (1.2)

where n is any outward normal vector to the boundary of Ω. The density and linear velocity

are denoted by ρ and u, respectively, ργ = p(ρ) is the pressure, and the interaction kernel

W is given by

W (x) = ±|x|α

α
, −d < α < 0.

The parameters γ > 1, κ > 0, ν ≥ 0 are the adiabatic exponent, the interaction strength,

and the collision frequency, respectively. This system models a single-species fluid subject

to attractive/repulsive interaction forces depending on the sign ±.

The goal of this work is twofold. First, one obtains a weak-strong uniqueness property

for system (1.1), and then one establishes the high-friction limit (ν → ∞) of system (1.1)

towards the following diffusion-aggregation equation:

∂tρ = ∇ ·
(
∇ργ + κρ∇W ∗ ρ

)
in ]0, T [× Ω, (1.3)

with the boundary conditions (if Ω is a bounded domain),(
∇ργ + κρ∇W ∗ ρ

)
· n = 0 on [0, T [× ∂Ω. (1.4)

These equations find applications in mathematical biology or plasma physics, for instance

in the modelling of the behaviour of cell populations as adhesion or chemotaxis, or in the

modelling of charged particles subject to electric forces, see [4, 6, 5] and references therein.
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Both results are obtained using the relative energy method. In both cases, the necessary

estimates are essentially identical. This serves as a clear illustration of the close mathemat-

ical relationship between weak-strong uniqueness principles and relaxation phenomena.

The relative energy method is an efficient methodology for achieving stability results,

including weak-strong uniqueness principles, and establishing asymptotic limits. Since its

origin, e.g. [14], this method has seen an extensive applicability to diffusive relaxation

[2, 3, 9, 17, 18].

In the present manuscript, we consider weak and strong solutions for (1.1) and strong

solutions for (1.3). Equation (1.3) can be regarded as a gradient flow in the space of prob-

ability measures endowed with a Wasserstein distance [7, 8]. In fact, equation (1.3) can be

written as ∂tρ+∇ · (ρu) = 0,

ρu = −∇ργ − κρ∇W ∗ ρ.

As a consequence, the velocity field is given by u = −∇ δE
δρ with the free energy functional

E(ρ) defined as

E(ρ) =
∫
Ω

1
γ−1ρ

γ + κ 1
2ρ(W ∗ ρ) dx

over probability densities and its variation computed with zero mass perturbations. Within

that framework, the emergence of a gradient flow type equation as the high-friction limit

of its Euler counterpart has also been studied [5]. The results presented here extend the

ones obtained in [1] and [18] to what concerns the weak-strong uniqueness principle and the

high-friction limit, respectively. In the former, one establishes the weak-strong uniqueness

principle for a Euler-Poisson system in the whole space, taking as solution of the Poisson

equation the convolution of the density with the Newtonian kernel. The same result can be

obtained in the bounded setting considering the Neumann function instead, which essentially

corresponds to the present case with α = 2 − d and d ≥ 3. In [18], the authors establish

the high-friction limit of a Euler-Poisson system towards a Keller-Segel system in a periodic

setting. In this case, the high-friction limit is established for γ ≥ 2− 2
d . This range for the

adiabatic exponent is also valid for a weak-strong uniqueness principle or high-friction limit of

a Euler-Poisson system in a bounded domain, where the Neumann function is put together

with the regularity theory employed in [18]. In those cases, using the Poisson equation

one derives integration by parts formulas that prove very useful in obtaining the necessary

estimates to reach the desired stability results. In the present case, those integration by

parts formulas do not apply. Moreover, the same range for the adiabatic exponent was

obtained in [9] where the authors establish the high-friction limit of a Euler system with a

bounded interaction kernel.

The high-friction limit of a pressureless Euler-Riesz system towards an aggregation equa-

tion is studied in [10, 12]. In the pressureless case, the relative interaction energy cannot be

controlled by a pressure, and therefore should be controlled by either itself or by the rela-

tive kinetic energy. In [10, 12], the Wasserstein distance combined with the relative kinetic
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energy is employed to handle the nonlocal interaction term when it is regular. On the other

hand, the interaction potential W is given by the Coulombic or super-Coulombic interaction

and the relative interaction energy is used to bound the nonlocal terms. See also [13, 20]

for estimates of relative interaction energies with Riesz potentials. Additionally, theories on

well-posedness and existence of solutions for Euler-Riesz systems can be found in [11, 15].

The results obtained here are accomplished by means of the relative energy for (1.1),

which is the quadratic part of the Taylor expansion of the energy functional, see Section 2.

For the weak-strong uniqueness principle, we compare weak and strong solutions of (1.1),

while for the high-friction limit we compare a strong solution of (1.3) with a weak solution

of (1.1) in the limit ν → ∞. The first step is to obtain an inequality satisfied by the

relative energy between the two considered solutions. The terms on the right-hand-side of

that inequality are then bounded using the relative energy. Among these estimates, the one

deserving special attention is the one containing the interaction kernel, which is dealt with

using a particular case of a Hardy-Littlewood-Sobolev inequality.

As a summary, we are able to prove our main results – weak-strong uniqueness and

high-friction limit – in the ranges:

γ ≥ 2− α+ d

d
, 1− d < α < 0, d > 1.

The weak-strong uniqueness result in stated in Section 3.1 and it is proved in Section 4.3.

The result concerning the high-friction limit is stated in Section 3.2 and its proof is sketched

in Section 4.4. Moreover, we have to restrict the admissible values of the interaction strength

to ensure that the relative energy is non-negative, otherwise the stability results could not

be obtained, see Section 4.2.

Remark 1.1. The results obtained in this manuscript may be understood as formal re-

sults as one considers notions of solutions whose existence theories are not yet available.

Nonetheless, the weak solutions considered here are reasonable to what concerns the a priori

estimates of system (1.1), and the strong solutions can be seen as classical solutions with

additional boundedness assumptions.

2. Energy and Relative Energy Identities

In this section we formally derive the energy and relative energy identities for system

(1.1). First, we introduce the internal energy function h(ρ) = 1
γ−1ρ

γ , which is connected to

the pressure p(ρ) = ργ via the relation ρh′′(ρ) = p′(ρ), with ρ > 0. Moreover, the potential

energy functional E = E(ρ) associated with system (1.1) is given by

E(ρ) =
∫
Ω

h(ρ) + κ 1
2ρ(W ∗ ρ) dx.

Using the symmetry of W, one computes the functional derivative δE
δρ , which is given by

δE
δρ

(ρ) = h′(ρ) + κ(W ∗ ρ).
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The relative potential energy functional associated with (1.1) is then given by

E(ρ|ρ̄) = E(ρ)− E(ρ̄)−
〈δE
δρ

(ρ̄), ρ− ρ̄
〉

=

∫
Ω

h(ρ|ρ̄) + κ 1
2 (ρ− ρ̄)(W ∗ (ρ− ρ̄)) dx,

where h(ρ|ρ̄) = h(ρ)− h(ρ̄)− h′(ρ̄)(ρ− ρ̄).

Assume that (ρ, u) is a smooth solution of (1.1) (satisfying (1.2) if Ω is a bounded domain).

By taking the inner product of the second equation in (1.1) with u, integrating the resulting

expression over space, and utilizing the symmetry of W , we obtain the energy identity for

system (1.1):

d

dt

∫
Ω

1
2ρ|u|

2 + h(ρ) + κ 1
2ρ(W ∗ ρ) dx = −

∫
Ω

νρ|u|2 dx.

Observe that for ν = 0 the energy is conserved over time while for ν > 0 the energy is

dissipated.

The kinetic energy functional associated with system (1.1) is the functional K = K(ρ, ρu)

given by

K(ρ, ρu) =

∫
Ω

1
2ρ|u|

2 dx.

After a straightforward derivation we obtain the following functional derivatives:

δK
δρ

(ρ, ρu) = − 1
2 |u|

2,
δK

δ(ρu)
(ρ, ρu) = u.

Using these derivatives we can calculate the relative kinetic energy functional associated

with (1.1):

K(ρ, ρu|ρ̄, ρ̄ū) = K(ρ, ρu)−K(ρ̄, ρ̄ū)−
〈δK
δρ

(ρ̄, ρ̄ū), ρ− ρ̄
〉
−

〈 δK
δ(ρu)

(ρ̄, ρ̄ū), ρu− ρ̄ū
〉

=

∫
Ω

1
2ρ|u− ū|2 dx.

Now, we present the relative energy identity for system (1.1). Assuming that (ρ̄, ū) is another

smooth solution of (1.1), by adding the relative kinetic and relative potential energies of (1.1),

after taking the time derivative we obtain:

d

dt

∫
Ω

1
2ρ|u− ū|2 + h(ρ|ρ̄) + κ 1

2 (ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx+

∫
Ω

νρ|u− ū|2 dx

=−
∫
Ω

∇ū : ρ(u− ū)⊗ (u− ū) dx

−
∫
Ω

(∇ · ū)p(ρ|ρ̄) dx

+

∫
Ω

κ(ρ− ρ̄)ū · ∇W ∗ (ρ− ρ̄) dx.

3. Main results

In this section we present the main results of this work – a weak-strong uniqueness

property for system (1.1), and its high-friction limit towards (1.3) as ν → ∞.

Before stating the results for each case, we provide the notions of solutions that will be

employed in our analysis. Specifically, for the weak-strong uniqueness property we consider
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weak and strong solutions of system (1.1), while for the high-friction limit we focus on weak

solutions of system (1.1) and strong solutions of system (1.3).

3.1. Weak-strong uniqueness.

Definition 3.1. A pair (ρ, u) with non-negative ρ and such that

ρ ∈ C
(
[0, T [;Lγ(Ω)

)
,

ρu ∈ C
(
[0, T [;L1(Ω,Rd)

)
,

ρ|u|2 ∈ C
(
[0, T [;L1(Ω)

)
,

is a weak solution of (1.1) if:

(i) (ρ, u) satisfies a weak form of (1.1):

−
∫ T

0

∫
Ω

(∂tφ)ρ dxdt−
∫ T

0

∫
Ω

∇φ · (ρu) dxdt−
∫
Ω

φ(0, x)ρ0(x) dx = 0,

−
∫ T

0

∫
Ω

∂tφ̃ · (ρu) dxdt−
∫ T

0

∫
Ω

∇φ̃ : ρu⊗ u dxdt−
∫
Ω

φ̃(0, x) · ρ0(x)u0(x) dx

−
∫ T

0

∫
Ω

(∇ · φ̃)ργ dxdt−
∫ T

0

∫
Ω

φ̃ · (κρ∇W ∗ ρ) dxdt = −
∫ T

0

∫
Ω

νφ̃ · (ρu) dxdt,

for any Lipschitz test functions φ : [0, T [ × Ω → R and φ̃ : [0, T [ × Ω → Rd that have

compact support in time, and in the case of a bounded domain, satisfy φ̃ · n = 0 on

[0, T [× ∂Ω, where n denotes any outward normal vector to the boundary ∂Ω,

(ii) the mass is conserved:∫
Ω

ρ(t, x) dx = M < ∞ for t ∈ [0, T [,

(iii) the energy is finite:

sup
[0,T [

∫
Ω

1
2ρ|u|

2 + h(ρ) + κ 1
2ρ(W ∗ ρ) dx < ∞.

Furthermore, a weak solution of (1.1) is called dissipative if ρ(W ∗ρ) ∈ C
(
[0, T [;L1(Ω)

)
and

−
∫ T

0

∫
Ω

(
1
2ρ|u|

2 + h(ρ) + κ 1
2ρ(W ∗ ρ)

)
θ̇(t) dxdt+

∫ T

0

∫
Ω

νρ|u|2θ(t) dxdt

≤
∫
Ω

(
1
2ρ|u|

2 + h(ρ) + κ 1
2ρ(W ∗ ρ)

)∣∣
t=0

θ(0) dx

(3.1)

for all non-negative and compactly supported θ ∈ W 1,∞([0, T [).

Now, we present the notion of strong solution for (1.1).

Definition 3.2. A Lipschitz pair (ρ̄, ū), with positive ρ̄ and such that

ρ̄ ∈ L∞(
[0, T [;L∞(Ω)

)
,

ū ∈ L∞(
[0, T [;W 1,∞(Ω,Rd)

)
,

is a strong solution of (1.1) if:
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(i) (ρ̄, ū) satisfies ∂tρ̄+∇ · (ρ̄ū) = 0,

∂tū+ (ū · ∇)ū+∇h′(ρ̄) + κ∇W ∗ ρ̄ = −νρ̄ū,
(3.2)

for a.e. (t, x) ∈ ]0, T [× Ω,

(ii) the functions φ, φ̃ given by

φ = θ
(
− 1

2 |ū|
2 + h′(ρ̄) + κW ∗ ρ̄

)
,

φ̃ = θū,

can be used as test functions in the weak formulation detailed above, where θ is given

by (4.5),

(iii) (ρ̄, ū) satisfies the boundary conditions (1.2) in the case of a bounded domain.

Also, we prescribe initial data (ρ̄0, ū0) that satisfies∫
Ω

ρ̄0 dx = M̄ < ∞ and

∫
Ω

1
2 ρ̄0|ū0|2 + h(ρ̄0) + κ 1

2 ρ̄0(W ∗ ρ̄0) dx < ∞.

A feature of a strong solutions is that it satisfies the energy identity. This can be seen by

multiplying the second equation of (3.2) by ρ̄ū and then integrating it over space, leading

to:

d

dt

∫
Ω

1
2 ρ̄|ū|

2 + h(ρ̄) + κ 1
2 ρ̄(W ∗ ρ̄) dx = −

∫
Ω

νρ̄|ū|2 dx. (3.3)

Furthermore, we consider strong solutions (ρ̄, ū) of (1.1) that are bounded away from

vacuum, that is, there exist δ̂ > 0 and M̂ < ∞ such that

ρ̄(t, x) ∈ [δ̂, M̂ ] for (t, x) ∈ [0, T [. (3.4)

Weak and strong solutions of (1.1) are compared using the relative energy Ψ : [0, T [→ R

defined as follows:

Ψ(t) =

∫
Ω

1
2ρ|u− ū|2 + h(ρ|ρ̄) + κ 1

2 (ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx.

For the notions of solutions described above, we obtain the following weak-strong uniqueness

result:

Theorem 3.3. Let d > 1 and let (ρ, u) be a dissipative weak solution of (1.1) with 1− d <

α < 0, γ ≥ 2− α+d
d and κ sufficiently small. Let (ρ̄, ū) be a strong and bounded away from

vacuum solution of (1.1). Then, there exists C > 0 such that Ψ satisfies

sup
[0,T [

Ψ ≤ eCTΨ(0). (3.5)

Therefore, if (ρ0, u0) = (ρ̄0, ū0) then

(ρ(t), u(t)) = (ρ̄(t), ū(t)) for t ∈ [0, T [.
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3.2. High-friction limit towards a gradient flow.

Taking ν → ∞ in (1.1) formally yields the equilibrium state u = 0. Therefore, in order

to capture the limiting phenomena we must first consider a diffusive scaling. Let ε = 1/ν2

and consider the scaling

ρ̃(t, x) = ρ(ε−1/2t, x),

ũ(t, x) = ε−1/2u(ε−1/2t, x).

Dropping the tilde notation gives∂tρ+∇ · (ρu) = 0,

ε
(
∂t(ρu) +∇ · (ρu⊗ u)

)
+∇ργ + κρ∇W ∗ ρ = −ρu.

(3.6)

Taking ε → 0 in (3.6), one formally obtains (1.3).

We consider dissipative weak solutions of (3.6), which are completely analogous to the

dissipative weak solutions of (1.1) described in the previous section.

Now, we present the notion of strong solution of (1.3), to which one can establish the

convergence in the high-friction limit.

Definition 3.4. A positive Lipschitz function ρ̄, such that

ρ̄ ∈ W 1,∞(
[0, T [;W 1,∞(Ω)

)
,

is a strong solution of (1.3) if:

(i) ρ̄ satisfies

∂tρ̄ = ∇ ·
(
ρ̄∇(h′(ρ̄) + κW ∗ ρ̄)

)
(3.7)

for a.e. (t, x) ∈ ]0, T [× Ω,

(ii) the functions φ : [0, T [× Ω → R, φ̃ : [0, T [× Ω → Rd given by

φ = θ
(
− 1

2 |∇h′(ρ̄) + κ∇W ∗ ρ̄|2 + h′(ρ̄) + κW ∗ ρ̄
)
,

φ̃ = θ(−∇h′(ρ̄)− κ∇W ∗ ρ̄),

can be used as test functions in weak formulation detailed above, where θ is given by

(4.5),

(iii) ρ̄ satisfies the boundary conditions (1.4) in the case of a bounded domain,

(iv) Additionally,

∂2ρ̄

∂xi∂xj
,

∂2ρ̄

∂xi∂t
,
∂2(W ∗ ρ̄)
∂xi∂xj

,
∂2(W ∗ ρ̄)
∂xi∂t

∈ L∞([0, T [× Ω)

for i, j = 1, . . . , d.

We prescribe initial data ρ̄0 that satisfies∫
Ω

ρ̄0 dx = M̄ < ∞, and

∫
Ω

h(ρ̄0) + κ 1
2 ρ̄0(W ∗ ρ̄0) dx < ∞.

To compare a solution (ρ, u) of (3.6) with a solution ρ̄ of (1.3), we view the solution of

(1.3) as an approximation to (3.6) using the following equations:∂tρ̄+∇ · (ρ̄ū) = 0,

ε
(
∂t(ρ̄ū) +∇ · (ρ̄ū⊗ ū)

)
+∇p(ρ̄) + κρ̄∇W ∗ ρ̄ = −ρ̄ū+ εē.
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Here, ū is defined as ū = −∇h′(ρ̄)− κ∇W ∗ ρ̄, and ē is given as ē = ∂t(ρ̄ū) +∇ · (ρ̄ū⊗ ū).

Under the specified regularity conditions, there exists a positive constant C such that

∥ū∥∞, ∥∇ū∥∞, ∥ē∥∞ ≤ C.

These strong solutions dissipate the total energy. Indeed, multiplying the equation ū =

−∇h′(ρ̄)− κ∇W ∗ ρ̄ by ρ̄ū, then using equation (3.7) and integrating it over space leads to:

d

dt

∫
Ω

h(ρ̄) + κ 1
2 ρ̄(W ∗ ρ̄) dx = −

∫
Ω

ρ̄|ū|2 dx.

In this case, we consider the relative energy Φε : [0, T [→ R defined as

Φε(t) =

∫
Ω

ε 1
2ρ|u− ū|2 + h(ρ|ρ̄) + κ 1

2 (ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx.

The convergence in the high-friction limit of a weak solution of (3.6) towards a strong

solution of (1.3) is established in the following result:

Theorem 3.5. Let d > 1 and let (ρ, u) be a dissipative weak solution of (3.6) with 1− d <

α < 0, γ ≥ 2 − α+d
d and κ sufficiently small. Let ρ̄ be a strong solution of (1.3) satisfying

(3.4). Then, there exists C > 0 such that Φ satisfies

sup
[0,T [

Φε ≤ eCT (Φε(0) + ε2). (3.8)

Thus, if Φε(0) → 0 as ε → 0, then

sup
[0,T [

Φε → 0 as ε → 0.

4. Proofs

This section contains the proofs of Theorem 3.3 and Theorem 3.5.

4.1. Auxiliary results. First, we recall the notion of Riesz potentials. Given a measurable

function f : Ω → R and 0 < β < d, the Riesz potential of degree β of f is the function

Iβf : Ω → R given by

Iβf(x) =

∫
Ω

f(y)

|x− y|d−β
dy.

Furthermore, if f ∈ Lq(Ω) with 1 < q < d/β, then Iβf enjoys the following integrability

estimate [16]:

∥Iβf∥ dq
d−βq

≤ C(d, β, q) ∥f∥q. (4.1)

Using this terminology, the potential W ∗ ρ can be rewritten as

W ∗ ρ = ± 1
d−β Iβρ ,

where β = α+ d, 0 < β < d.

The next result aims to give meaning to the gradient of the potential W ∗ρ, following the

same ideas of [1, Proposition 3.1].
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Proposition 4.1. Let d > 1 and let ρ ∈ C
(
[0, T [;Lγ(Ω)

)
with γ ≥ γ0 = 2− β

d , 1 < β < d.

Then W ∗ρ ∈ C
(
[0, T [;Lr(Ω)

)
, where r = (2d−β)d

(d−β)2 , and its spatial gradient ∇(W ∗ρ) is given

by

∇(W ∗ ρ)(t, x) = ∇W ∗ ρ(t, x) = ±
∫
Ω

(x− y)

|x− y|d+2−β
ρ(t, y) dy,

from which

|∇W ∗ ρ| ≤ Iβ−1|ρ|.

Proof. We prove the first assertion using (4.1). Under the current hypotheses, ρ ∈ C
(
[0, T [;Lγ0(Ω)

)
.

A straightforward calculation gives:

dγ0
d− βγ0

=
(2d− β)d

(d− β)2
= r > 1,

and γ0 < d
β . Therefore,

∥W ∗ ρ∥r = 1
d−β ∥Iβρ∥ dγ0

d−βγ0

≤ C ∥ρ∥γ0 .

The linearity of Iβ then implies that W ∗ ρ ∈ C
(
[0, T [;L1(Ω)

)
, as desired.

Now, we proceed to prove the second assertion. The condition 1 < β is required in this

part. Take an arbitrary v ∈ C∞
c (Ω). We aim to prove that∫

Ω

(W ∗ ρ)vxi dx = −
∫
Ω

(Wxi ∗ ρ)v dx , i = 1, . . . , d.

Since W ∗ ρ ∈ L1(Ω), we have
∫
Ω
(W ∗ ρ)vxi dx < ∞, which, by Fubini’s theorem, implies

that ∫
Ω

(W ∗ ρ)vxi
dx =

∫
Ω

∫
Ω

W (x− y)vxi
(x) dx ρ dy.

Let Bε(y) be the open ball in Ω with center y and radius ε > 0. Note that the map

x → W (x− y) is smooth in Bc
ε(y) = Ω \Bε(y), and hence∫

Ω

W (x− y)vxi
(x) dx =

∫
Bε(y)

W (x− y)vxi
(x) dx+

∫
Bc

ε(y)

W (x− y)vxi
(x) dx

=

∫
Bε(y)

W (x− y)vxi
(x) dx+

∫
∂Bε(y)

W (x− y)v(x)ni(x) dS(x)

−
∫
Bc

ε(y)

Wxi
(x− y)v(x) dx,

where ni is the i-th component of the unit inward normal vector to the boundary of Bε(y).

Using polar coordinates we derive:∣∣∣ ∫
Bε(y)

W (x− y)vxi
(x) dx

∣∣∣ ≤ C

∫
Bε(y)

1

|x− y|d−β
dx

= C

∫ ε

0

∫
∂Br(y)

1

|x− y|d−β
dS(x)dr = Cεβ ,

and ∣∣∣ ∫
∂Bε(y)

W (x− y)v(x)ni(x) dS(x)
∣∣∣ ≤ C

∫
∂Bε(y)

1

|x− y|d−β
dS(x) = Cεβ−1.

The desired identity is then obtained by letting ε → 0 above. □
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Next, we state a lemma that combines a particular case of the Hardy-Littlewood-Sobolev

(HLS) inequality with interpolation of Lebesgue spaces. For the HLS inequality, we refer to

[19, Theorem 4.3].

Lemma 4.2. Let 0 < β < d, p = 2d
d+β , and γ0 = 2− β

d , so that 1 < p < γ0 < 2. If ρ ∈ Lγ(Ω)

with γ ≥ γ0, then there exists C > 0 such that

∥ρIβρ∥1 ≤ C ∥ρ∥2p ≤ C ∥ρ∥β/d1 ∥ρ∥γ0
γ0
. (4.2)

The last result of this section, proved in [17], provides a way of bounding the relative

function h(ρ|ρ̄) from below.

Lemma 4.3. Let h(ρ) = 1
γ−1ρ

γ with γ > 1, and let ρ̄ ∈ [δ, M̄ ], where δ > 0 and M̄ < ∞.

There exist R ≥ M̄+1 and C1, C2 > 0 depending on γ, δ, M̄ such that

h(ρ|ρ̄) ≥

C1|ρ− ρ̄|2 if ρ ∈ [0, R],

C2|ρ− ρ̄|γ if ρ ∈ ]R,∞[.

4.2. Non-negativity of the relative potential energy. In this section we prove that for

sufficiently small κ the relative potential energy remains non-negative, which implies that

the relative total energy also remains non-negative. This is essential for using the relative

total energy as a yardstick for comparing solutions.

Proposition 4.4. Let ρ ∈ Lγ(Ω) with γ ≥ 2− α+d
d , −d < α < 0, be non-negative, and let

ρ̄ ∈ L∞(Ω) be such that 0 < δ ≤ ρ̄ ≤ M̄ < ∞. There exists a positive constant C∗ such that∣∣∣ ∫
Ω

(ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx

∣∣∣ ≤ C∗

∫
Ω

h(ρ|ρ̄) dx. (4.3)

Proof. Let β = α + d, p = 2d
d+β , and γ0 = 2 − β

d . By the first inequality in Lemma 4.2 we

have: ∣∣∣ ∫
Ω

(ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx

∣∣∣ ≤ 1
d−β ∥(ρ− ρ̄)Iβ(ρ− ρ̄)∥1 ≤ C ∥ρ− ρ̄∥2p.

Let R be as in Lemma 4.3 and consider the sets B = {x ∈ Ω | 0 ≤ ρ(x) ≤ R}, and its

complement U = Ω \B = {x ∈ Ω | ρ(x) > R}. Then, the inclusion L2 ⊆ Lp and the second

inequality in (4.2) yield that:

∥ρ− ρ̄∥2p ≤ C
(∫

B

|ρ− ρ̄|p dx
)2/p

+ C
(∫

U

|ρ− ρ̄|p dx
)2/p

≤ C

∫
B

|ρ− ρ̄|2 dx+ C

∫
U

|ρ− ρ̄|γ0 dx.

By Lemma 4.3 it follows that∫
B

|ρ− ρ̄|2 dx ≤ C

∫
Ω

h(ρ|ρ̄) dx.

Now, almost everywhere in U it holds that |ρ− ρ̄| ≥ 1, hence, by Lemma 4.3 we obtain∫
U

|ρ− ρ̄|γ0 dx ≤
∫
U

|ρ− ρ̄|γ dx ≤ C

∫
Ω

h(ρ|ρ̄) dx,

which completes the proof. □
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Under the same conditions of the previous result, we choose κ so that 0 < κ < 2
C∗

, and

set λ := 1− κC∗
2 > 0. Thus,

0 ≤
∫
Ω

h(ρ|ρ̄) dx ≤ 1

λ

∫
Ω

h(ρ|ρ̄) + κ 1
2 (ρ− ρ̄)W ∗ (ρ− ρ̄) dx.

4.3. Proof of Theorem 3.3. The first step to establish the desired theorem is what is

called the relative energy inequality. The calculations involved are by now standard and

similar results can be found, for example, in [18, 9, 2]. Nevertheless, regarding the present

case, we provide the details for completeness.

Proposition 4.5. Let (ρ, u) be a dissipative weak solution of (1.1), and let (ρ̄, ū) be a strong

solution of (1.1). Then, for each t ∈ [0, T [, the relative energy Ψ satisfies

Ψ(t)−Ψ(0) +

∫ t

0

∫
Ω

νρ|u− ū|2 dxdt ≤ I1(t) + I2(t) + I3(t), (4.4)

where

I1(t) = −
∫ t

0

∫
Ω

∇ū : ρ(u− ū)⊗ (u− ū) dxdτ,

I2(t) = −
∫ t

0

∫
Ω

(∇ · ū)p(ρ|ρ̄) dxdτ,

I3(t) =
∫ t

0

∫
Ω

κ(ρ− ρ̄)ū · ∇W ∗ (ρ− ρ̄) dxdτ.

Proof. Fix t ∈ [0, T [, and let θ : [0, T [→ R be defined by

θ(τ) =


1 if 0 ≤ τ < t,
t− τ

k
+ 1 if t ≤ τ < t+ k,

0 if t+ k ≤ τ < T,

(4.5)

where k > 0 is such that t + k < T. Using this function θ in (3.1), after letting κ → 0 we

obtain: ∫
Ω

1
2ρ|u|

2 + h(ρ) + κ 1
2ρ(W ∗ ρ) dx

∣∣∣τ=t

τ=0
≤ −

∫ t

0

∫
Ω

νρ|u|2 dxdτ. (4.6)

Regarding the strong solution, integrating (3.3) over ]0, t[ results in:∫
Ω

1
2 ρ̄|ū|

2 + h(ρ̄) + κ 1
2 ρ̄(W ∗ ρ̄) dx

∣∣∣τ=t

τ=0
= −

∫ t

0

∫
Ω

νρ̄|ū|2 dxdτ. (4.7)

Next, we consider the weak formulation applied to the difference (ρ − ρ̄, ρu − ρ̄ū) between

the weak and strong solutions. The weak formulation reads:

−
∫ T

0

∫
Ω

(∂tφ)(ρ− ρ̄) dxdt−
∫ T

0

∫
Ω

∇φ · (ρu− ρ̄ū) dxdt−
∫
Ω

φ(ρ− ρ̄)
∣∣
t=0

dx = 0,

−
∫ T

0

∫
Ω

∂tφ̃ · (ρu− ρ̄ū) dxdt−
∫ T

0

∫
Ω

∇φ̃ : (ρu⊗ u− ρ̄ū⊗ ū) dxdt

−
∫ T

0

∫
Ω

(∇ · φ̃)
(
p(ρ)− p(ρ̄)

)
dxdt−

∫
Ω

φ̃ · (ρu− ρ̄ū)
∣∣
t=0

dx

= −
∫ T

0

∫
Ω

φ̃ · (κρ∇W ∗ ρ− κρ̄∇W ∗ ρ̄) dxdt−
∫ T

0

∫
Ω

νφ̃ · (ρu− ρ̄ū) dxdt,

for any Lipschitz test functions φ : [0, T [×Ω → R, φ̃ : [0, T [×Ω → Rd that have compact

support in time, and satisfy φ̃ · n = 0 on [0, T [× ∂Ω.
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Consider as tests functions above the functions given by φ = θ
(
− 1

2 |ū|
2+h′(ρ̄)+κW ∗ ρ̄

)
and φ̃ = θū, where θ is the same as in (4.5). Letting k → 0 results in:∫

Ω

(
− 1

2 |ū|
2 + h′(ρ̄) + κW ∗ ρ̄

)
(ρ− ρ̄) dx

∣∣∣τ=t

τ=0

−
∫ t

0

∫
Ω

∂τ
(
− 1

2 |ū|
2 + h′(ρ̄) + κW ∗ ρ̄

)
(ρ− ρ̄) dxdτ (4.8)

−
∫ t

0

∫
Ω

∇
(
− 1

2 |ū|
2 + h′(ρ̄) + κW ∗ ρ̄

)
· (ρu− ρ̄ū) dxdτ = 0,

∫
Ω

ū · (ρu− ρ̄ū) dx
∣∣∣τ=t

τ=0
−
∫ t

0

∫
Ω

(∂τ ū) · (ρu− ρ̄ū) dxdτ

−
∫ t

0

∫
Ω

∇ū : (ρu⊗ u− ρ̄ū⊗ ū) dxdτ −
∫ t

0

∫
Ω

(∇ · ū)
(
p(ρ)− p(ρ̄)

)
dxdτ (4.9)

=−
∫ t

0

∫
Ω

ū · (κρ∇W ∗ ρ− κρ̄∇W ∗ ρ̄) dxdτ −
∫ t

0

∫
Ω

νū · (ρu− ρ̄ū) dxdτ.

Now, we collect ((4.6)− (4.7− (4.8)− (4.9)) to obtain∫
Ω

1
2ρ|u− ū|2 + h(ρ|ρ̄) + κ 1

2 (ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx

∣∣∣τ=t

τ=0

≤−
∫ t

0

∫
Ω

νρ|u|2 − νρ̄|ū|2 − νū · (ρu− ρ̄ū) dxdτ

−
∫ t

0

∫
Ω

∂τ (− 1
2 |ū|

2 + h′(ρ̄) + κW ∗ ρ̄)(ρ− ρ̄) dxdτ

−
∫ t

0

∫
Ω

∇(− 1
2 |ū|

2 + h′(ρ̄) + κW ∗ ρ̄) · (ρu− ρ̄ū) dxdτ

−
∫ t

0

∫
Ω

(∂τ ū) · (ρu− ρ̄ū)dxdτ −
∫ t

0

∫
Ω

∇ū : (ρu⊗ u− ρ̄ū⊗ ū) dxdτ

−
∫ t

0

∫
Ω

(∇ · ū)
(
p(ρ)− p(ρ̄)

)
dxdτ +

∫ t

0

∫
Ω

ū · (κρ∇W ∗ ρ− κρ̄∇W ∗ ρ̄) dxdτ.

(4.10)

The left-hand side of the inequality above was obtained using the symmetry of W . Recall

that the strong solution (ρ̄, ū) satisfies ∂tū+ ū ·∇ū = −∇
(
h′(ρ̄)+κW ∗ ρ̄

)
−νū. Multiplying

the above expression by ρ(u− ū) gives:

∂t
(
− 1

2 |ū|
2
)
(ρ− ρ̄) + ∂tū · (ρu− ρ̄ū) +∇

(
− 1

2 |ū|
2
)
· (ρu− ρ̄ū) +∇ū : (ρu⊗ u− ρ̄ū⊗ ū)

=− ρ∇h′
1(ρ̄) · (u− ū)− ρ∇ϕ̄ · (u− ū) +∇ū : ρ(u− ū)⊗ (u− ū)− νρū · (u− ū). (4.11)

Substituting (4.11) into (4.10) results in:∫
Ω

1
2ρ|u− ū|2 + h(ρ|ρ̄) + κ 1

2 (ρ− ρ̄)
(
W ∗ (ρ− ρ̄)

)
dx

∣∣∣τ=t

τ=0

≤−
∫ t

0

∫
Ω

νρ|u|2 − νρ̄|ū|2 − νū · (ρu− ρ̄ū)− νρū · (u− ū) dxdτ

−
∫ t

0

∫
Ω

∂τ (h
′(ρ̄) + κW ∗ ρ̄)(ρ− ρ̄) dxdτ −

∫ t

0

∫
Ω

∇(h′(ρ̄) + κW ∗ ρ̄) · (ρu− ρ̄ū) dxdτ

−
∫ t

0

∫
Ω

(∇ · ū)
(
p(ρ)− p(ρ̄)

)
dxdτ +

∫ t

0

∫
Ω

ū · (κρ∇W ∗ ρ− κρ̄∇W ∗ ρ̄) dxdτ (4.12)

+

∫ t

0

∫
Ω

ρ∇h′(ρ̄) · (u− ū) dxdτ +

∫ t

0

∫
Ω

κρ(u− ū) · ∇W ∗ ρ̄ dxdτ

−
∫ t

0

∫
Ω

∇ū : ρ(u− ū)⊗ (u− ū) dxdτ.
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Using the continuity equation satisfied by the strong solution, we derive:

∂t
(
h′(ρ̄)

)
(ρ− ρ̄) +∇h′(ρ̄) · (ρu− ρ̄ū) + (∇ · ū)

(
p(ρ)− p(ρ̄)

)
−∇h′(ρ̄) · (ρu− ρū)

= (∇ · ū)p(ρ|ρ̄).
(4.13)

Moreover, using the symmetry of W we get:

−
∫
Ω

∂t(κW ∗ ρ̄)(ρ− ρ̄) dx−
∫
Ω

∇(κW ∗ ρ̄) · (ρu− ρ̄ū) dx

+

∫
Ω

ū · (κρ∇W ∗ ρ− κρ̄∇W ∗ ρ̄) dx+

∫
Ω

κρ(u− ū) · ∇W ∗ ρ̄ dx

=

∫
Ω

κ(ρ− ρ̄)ū · ∇W ∗ (ρ− ρ̄) dx.

(4.14)

Replacing (4.13) and (4.14) in (4.12) yields the desired result. □

The next step is to bound the terms Ii from above using the relative energy Ψ. For I1
and I2 we have:

I1(t) = −
∫ t

0

∫
Ω

∇ū : ρ(u− ū)⊗ (u− ū) dxdτ

≤ C ∥∇ū∥∞
∫ t

0

∫
Ω

ρ|u− ū|2 dxdτ ≤ C

∫ t

0

Ψ(τ) dτ,

I2(t) = −
∫ t

0

∫
Ω

(∇ · ū)p(ρ|ρ̄) dxdτ

≤ ∥∇ · ū∥∞(γ − 1)

∫ t

0

∫
Ω

h(ρ|ρ̄) dxdτ ≤ C

∫ t

0

Ψ(τ) dτ.

Regarding I3, we first observe

I3(t) =
∫ t

0

∫∫
Ω×Ω

κū(x) · (ρ− ρ̄)(x)∇W (x− y)(ρ− ρ̄)(y) dxdydτ

=
1

2

∫ t

0

∫∫
Ω×Ω

κ(ū(x)− ū(y)) · (ρ− ρ̄)(x)∇W (x− y)(ρ− ρ̄)(y) dxdydτ

due to ∇W (−x) = −∇W (x) for x ∈ Ω. Since

|ū(x)− ū(y)||∇W (x− y)| ≤ C∥∇ū∥∞|x− y|α,

we proceed as in the proof of Proposition 4.4 with β = α+ d obtaining:

I3(t) ≤ C

∫ t

0

∥(ρ− ρ̄)Iβ(ρ− ρ̄)∥1 dτ

≤ C

∫ t

0

∫
Ω

h(ρ|ρ̄) dxdτ ≤ C

∫ t

0

Ψ(τ) dτ.

In light of the previous bounds, expanding (4.4) further yields

Ψ(t)−Ψ(0) +

∫ t

0

∫
Ω

νρ|u− ū|2 dxdτ ≤ C

∫ t

0

Ψ(τ) dτ, t ∈ [0, T [,

from which (3.5) follows by Gronwall’s lemma.
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4.4. Proof of Theorem 3.5. The proof of the next result is analogous to the proof of

Proposition 4.5, and is therefore omitted. The only difference to the error term ē that is

present in this case.

Proposition 4.6. Let (ρ, u) be a dissipative weak solution of (3.6), and let ρ̄ be a strong

solution of (1.3). Then, for each t ∈ [0, T [, the relative energy Φ satisfies

Φε(t)− Φε(0) +

∫ t

0

∫
Ω

ρ|u− ū|2 dxdτ ≤ J1(t) + J2(t) + J3(t) + J4(t),

where

J1(t) = −
∫ t

0

∫
Ω

ε∇ū : ρ(u− ū)⊗ (u− ū) dxdτ,

J2(t) = −
∫ t

0

∫
Ω

(∇ · ū)p(ρ|ρ̄) dxdτ,

J3(t) =

∫ t

0

∫
Ω

κ(ρ− ρ̄)ū · ∇W ∗ (ρ− ρ̄) dxdτ,

J4(t) = −
∫
t

∫
Ω

ε
ρ

ρ̄
ē · (u− ū) dxdτ.

Similarly as above, we obtain the following bounds:

Ji(t) ≤ C

∫ t

0

Φε(τ) dτ, i = 1, 2, 3.

The term J4 is treated as follows,

J4(t) = −
∫ t

0

∫
Ω

ε
ρ

ρ̄
ē · (u− ū) dxdτ ≤

∫ t

0

∫
Ω

1
2ρ|u− ū|2 dxdτ +

∫ t

0

∫
Ω

ε2

2
ρ
∣∣∣ ē
ρ̄

∣∣∣2 dxdτ

≤
∫ t

0

∫
Ω

1
2ρ|u− ū|2 dxdτ + Cε2t.

Thus,

Φε(t)− Φε(0) +

∫ t

0

∫
Ω

1
2ρ|u− ū|2 dxdτ ≤ C

∫ t

0

Φε(τ) dτ + Cε2t, t ∈ [0, T [,

from which (3.8) follows by Gronwall’s lemma.
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