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Abstract. In this article, the weak-strong uniqueness principle is proved for an Euler-Poisson system

in the whole space, with initial data so that the strong solution exists. Some results on Riesz potentials

are used to justify the considered weak formulation. Then, one follows the relative energy methodology

and, in order to handle the solution of Poisson’s equation, employs the theory of Riesz potentials.

1. Introduction

This work is concerned with the weak-strong uniqueness principle for the following Euler-Poisson

system in ]0, T [× Rd, with T < ∞ and d ∈ N, d ≥ 3 :
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇ργ + ρ∇ϕ = 0

−∆ϕ = ρ .

(1.1)

This system describes the evolution of a single-species fluid composed by charged carriers – a basic model

in plasma physics or semiconductor theory. The density of the fluid is represented by ρ, its linear velocity

is denoted by u, and ϕ is the electric potential generated by the charged particles. The first equation

is the continuity equation, which represents the conservation of mass or charge. The evolution of the

momentum ρu is given by the second equation, with γ > 1 being the adiabatic exponent of the fluid.

The last equation – Poisson’s equation – determines the electric potential ϕ, which is represented by

ϕ(t, x) =
1

c(d)

∫
Rd

ρ(t, y)

|x− y|d−2
dy , (1.2)

where c(d) = d(d− 2)L(B1(0)) =
d(d−2)πd/2

Γ( d
2 )+1

and L denotes the Lebesgue measure. Representation (1.2)

is a particular case of a more general concept – Riesz potentials.

The goal of this work is to establish the weak-strong uniqueness property of system (1.1) using the

machinery of Riesz potentials together with the relative energy method. The weak-strong uniqueness

principle, with respect to certain classes of weak and strong solutions, says that if a weak solution

coincides with the strong solution at the initial time, for initial data (ρ0, ρ0u0, ϕ0) so that the strong

solution exists, then they coincide for all times where both are defined. The notions of weak and strong

solutions used for the current analysis are detailed in section 3. For those classes of solutions one obtains

the following result:

Theorem 1.1. Let (ρ, ρu, ϕ) be a dissipative weak solution of (1.1) with γ ≥ 2d
d+1 , and let (ρ̄, ρ̄ū, ϕ̄) be a

strong solution of (1.1). If (ρ0, ρ0u0) = (ρ̄0, ρ̄0ū0) then, for every t ∈ [0, T [,(
ρ(t), ρ(t)u(t), ϕ(t)

)
=

(
ρ̄(t), ρ̄(t)ū(t), ϕ̄(t)

)
.
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The weak-strong uniqueness property lives behind the stability estimates on relaxation; see [7] for

the weak-strong uniqueness of a Euler-Poisson system, for periodic solutions, as a consequence of its

relaxation limit towards a Keller-Segel system. The weak-strong uniqueness principle has also been

studied for the Euler-Poisson system with linear damping and confinement in a bounded smooth domain,

for classes of measure-valued solutions; in this case being called measure-valued-strong uniqueness [3].

Furthermore, it has as well been studied for a similar set of equations, the Navier-Stokes-Poisson system,

for classes of weak solutions that are continuous in time with respect to the weak topology [2]. In those

cases, the relative energy method was employed to achieve a stability estimate from which the weak-

strong uniqueness follows. Here, that approach is also used for weak solutions that are continuous in

time and defined in the whole space Rd, which represents the novelty of the present work. Such weak

solutions have not yet been proved to exist, and it is out of the scope of this manuscript to establish their

existence. Nevertheless, one considers that notion of weak solution for its consistency with the a priori

energy estimates of the system. The theory of Riesz potentials will be important in the justification of the

weak formulation to what concerns the terms containing the electric potential ϕ. The estimates on Riesz

potentials also yield the thresholds for the adiabatic exponent γ. Those estimates are as well crucial to

overcome the difficulties of the technical part of the proof of the main stability estimate, which is done

via an integration by parts formula. The relative energy method is an efficient tool for the analysis of

stability of systems of conservation laws; see [4] for an early work on the stability of thermoelastic fluids,

and [5] for more recent developments. This method has also been successful in establishing limiting

processes; see [7] for the high-friction limit of single-species Euler flows towards gradient flows, and [1] for

the relaxation limit of a two-species Euler-Poisson system with friction towards a bipolar drift-diffusion

system.

Section 2 presents all the results on Riesz potentials that will be important for the subsequent analysis.

Those results are essentially a consequence of a classical result on Riesz potentials, Proposition 2.1,

together with Hölder’s inequality.

Section 3 is devoted to considerations on the Euler-Poisson system (1.1). First, one formally derives

the energy and the relative energy identities for the system. The relative energy is the crucial concept

for the analysis of the weak-strong uniqueness done here, as it serves as a yardstick for the comparison

between the two solutions. Moreover, the notions of weak and strong solutions are given. Those will be

used in the rigorous derivation of the relative energy inequality in the last section.

Section 4 is intended to establish the weak-strong uniqueness principle for system (1.1) with respect

to weak and strong solutions under the regularity specified in section 3. The crucial result, Theorem 4.1,

is an inequality satisfied by the relative energy from which Theorem 1.1 immediately follows. The most

technical part of the proof of that result is handled using an integration by parts formula, Proposition

4.3, which is proved using the results on Riesz potentials presented in subsection 2.2.
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2. Riesz potentials

Let d ∈ N and 0 < α < d. The Riesz potential of degree α of a measurable function f is the function

Iαf given by

Iαf(x) =

∫
Rd

f(y)

|x− y|d−α
dy .

Observe that the integrand part of (1.2) coincides with the integrand part of the Riesz potential of degree

2 of the density ρ. To deal with the electric potential ϕ and with the electric field −∇ϕ one uses some

integrability inequalities for Riesz potentials that will be derived here. The starting point to obtain those

inequalities is the following classical result, proved in [6, 8].

Proposition 2.1. Let f ∈ Lp(Rd), where 1 < p < d/α with 0 < α < d. Then

||Iαf || dp
d−αp

≤ C(d, α, p) ||f ||p . (2.1)

2.1. Preliminaries. This subsection contains preliminary results that serve to emphasize the simple

idea of choosing the integrability exponent p in (2.1) in such a way that dp
d−αp is the Hölder conjugate of

some other integrability exponent q.

Proposition 2.2. Let d ∈ N, 0 < α, β < d and let f ∈ Lp(Rd), g ∈ Lq(Rd) with p, q ∈ ]1,∞[.

(i) If 1 < p, q < d
α are such that 1

p + 1
q = 1 + α

d , then

||(Iαf)g||1 ≤ C(d, α, p) ||f ||p||g||q .

(ii) If 1 < p, q < d
α+β are such that 1

p + 1
q = 1 + α+β

d , then

||(Iαf)(Iβg)||1 ≤ C(d, α, β, p) ||f ||p||g||q .

Proof.

(i) First observe that

1

p
+

1

q
= 1 +

α

d
⇔ q′ =

q

q − 1
=

dp

d− αp
,

and

1 < p ⇔ q <
d

α
, p <

d

α
⇔ 1 < q .

Thus, Hölder inequality together with (2.1) yields

||(Iαf)g||1 ≤ ||Iαf ||q′ ||g||q

= ||Iαf || dp
d−αp

||g||q

≤ C(d, α, p) ||f ||p ||g||q .

(ii) Similarly,

1

p
+

1

q
= 1 +

α+ β

d
⇔ s =

dp

d− αp
and s′ =

s

s− 1
=

dq

d− βq
,

and

1 < p ⇔ q <
d

α+ β
, p <

d

α+ β
⇔ 1 < q .
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Thus, Hölder’s inequality together with (2.1) gives

||(Iαf)(Iβg)||1 ≤ ||Iαf ||s ||Iβg||s′

= ||Iαf || dp
d−αp

||Iβg|| dq
d−βq

≤ C(d, α, p) C(d, β, q) ||f ||p ||g||q .

□

2.2. Riesz potentials on L1(Rd) ∩ Lγ(Rd). The results presented here are obtained combining the

same idea of the previous subsection with the interpolation of Lebesgue measurable spaces. These results

will be crucial for the proof of Proposition 4.3.

Proposition 2.3. Let d ∈ N, 0 < α ≤ β < d/2 and ρ, η ∈ L1(Rd) ∩ Lγ(Rd) with γ ≥ 2d
d+2α . Then

||Iαρ||2 ≤ C(d, α) ||ρ|| 2d
d+2α

, (2.2)

||(Iβη)(Iαρ)||1 ≤ C(d, α, β) ||η|| 2d
d+2β

||ρ|| 2d
d+2α

. (2.3)

Proof. Set p = 2d
d+2α , q = 2d

d+2β and note that ρ, η ∈ Lp(Rd) ∩ Lq(Rd). Moreover, a simple calculation

yields

2 =
dp

d− αp
=

dq

d− βq
.

Then, (2.2) easily follows from (2.1), and (2.3) follows from (2.2) together with Hölder’s inequality. □

Proposition 2.4. Let d ∈ N, 0 < α < d and ρ, η ∈ L1(Rd) ∩ Lγ(Rd) with γ ≥ 2d
d+α . Then

||ηIαρ||1 ≤ C(d, α) ||η|| 2d
d+α

||ρ|| 2d
d+α

. (2.4)

Proof. Set γ0 = 2d
d+α and note that ρ, η ∈ Lγ0(Rd). Moreover, a simple calculation yields

γ′
0 =

γ0
γ0 − 1

=
dγ0

d− αγ0
,

whence, by Hölder’s inequality and (2.1),

||ηIαρ||1 ≤ ||η||γ0
||Iαρ||γ′

0
≤ C(d, α)||η||γ0

||ρ||γ0
.

□

2.3. Riesz potentials on C
(
[0, T [;L1(Rd)∩Lγ(Rd)

)
. As a consequence of the previous results, one

has that the continuity in time of ρ is propagated to Iαρ and ρIαρ. Precisely:

Proposition 2.5. Let d ∈ N, 0 < α < d/2 and ρ ∈ C
(
[0, T [;L1(Rd) ∩ Lγ(Rd)

)
with γ ≥ 2d

d+2α . Then

Iαρ ∈ C
(
[0, T [;L2(Rd)

)
.

Proof. Set p = 2d
d+2α and observe that ρ ∈ C

(
[0, T [;Lp(Rd)

)
. Let ε > 0, t ∈ [0, T [ and set ε̃ = ε

C where

C = C(d, α) is as in (2.2). There exists δ = δ(ε, t) > 0 such that if s ∈ [0, T [ satisfies |t − s| < δ then

||ρ(t)− ρ(s)||p < ε̃. Thus, whenever |t− s| < δ one has

||Iαρ(t)− Iαρ(s)||2 = ||Iα(ρ(t)− ρ(s))||2 ≤ C||ρ(t)− ρ(s)||p < Cε̃ = ε ,

which completes the proof. □
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Proposition 2.6. Let d ∈ N, 0 < α < d and ρ ∈ C
(
[0, T [;L1(Rd) ∩ Lγ(Rd)

)
with γ ≥ 2d

d+α . Then

ρIαρ ∈ C
(
[0, T [;L1(Rd)

)
.

Proof. Set γ0 = 2d
d+α and note that ρ ∈ C

(
[0, T [;Lγ0(Rd)

)
. Let ε > 0, t ∈ [0, T [, and choose ε̃ > 0 so that

Cε̃2+2C||ρ(t)||γ0
ε̃ < ε, where C = C(d, α) is as in (2.4). There exists δ = δ(ε, t) > 0 such that whenever

s ∈ [0, T [ satisfies |t− s| < δ one has ||ρ(t)− ρ(s)||γ0
< ε̃. Thus, using (2.4), for |t− s| < δ one has

||ρ(t)Iαρ(t)− ρ(s)Iαρ(s)||1 ≤ ||(ρ(t)− ρ(s))Iαρ(t)||1 + ||ρ(s)Iα(ρ(t)− ρ(s))||1

≤ C||ρ(t)− ρ(s)||γ0
(||ρ(t)||γ0

+ ||ρ(s)||γ0
)

≤ C||ρ(t)− ρ(s)||γ0
(2||ρ(t)||γ0

+ ||ρ(t)− ρ(s)||γ0
)

< Cε̃(2||ρ(t)||γ0 + ε̃)

< ε ,

which completes the proof. □

3. Euler-Poisson system

Set p(ρ) = ργ , γ > 1 and let h(ρ) = 1
γ−1ρ

γ . The functions p and h can be regarded as the pressure

and internal energy functions of system (1.1), respectively. It can be readily seen that p and h satisfy

ρh′′(ρ) = p′(ρ) , ρh′(ρ) = p(ρ) + h(ρ) for ρ > 0 . (3.1)

Using the pressure function, system (1.1) can be rewritten as:
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇p(ρ) + ρ∇ϕ = 0 in ]0, T [× Rd

−∆ϕ = ρ

(3.2)

where T > 0 is a finite fixed time horizon and d ∈ N, d ≥ 3. Using the language of Riesz potentials, one

regards the electric potential ϕ as

ϕ = 1
c(d)I2ρ .

System (3.2) is supplemented with initial data ρ0, u0, and ϕ0 = 1
c(d)I2ρ0.

3.1. Energy and relative energy. Assume that (ρ, ρu) with ϕ = K ∗ ρ is a smooth solution of (3.2),

where K(x) = 1
c(d)|x|d−2 . Multiplying the momentum equation by u and using the continuity and Poisson

equations yields

∂t
(
1
2ρ|u|

2 + h(ρ) + 1
2 |∇ϕ|2

)
+∇ ·

(
1
2ρ|u|

2u+ ρh′(ρ) + ϕρu− ϕ∇∂tϕ
)
= 0 .

The previous identity represents the conservation of total energy of the system.

The total energy of the system can be decomposed into kinetic and potential parts. The kinetic energy

functional is the functional K = K(ρ, ρu) given by

K(ρ, ρu) =

∫
Rd

1
2ρ|u|

2 dx , (3.3)

while the potential energy functional is the functional E = E(ρ) given by

E(ρ) =
∫
Rd

h(ρ) + 1
2ρ(K ∗ ρ) dx

=

∫
Rd

h(ρ) + 1
2 |∇ϕ|2 dx , −∆ϕ = ρ .

(3.4)
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It is important to calculate the functional derivatives of these energy functionals. A straightforward

computation gives

δK
δρ

(ρ, ρu) = − 1
2 |u|

2 ,
δK

δ(ρu)
(ρ, ρu) = u , (3.5)

and from the symmetry of K one also deduces that

δE
δρ

(ρ) = h′(ρ) + ϕ . (3.6)

Thus, system (3.2) can be recast into a more abstract form:∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) + ρ∇δE
δρ

(ρ) = 0 ,
(3.7)

where E is given by (3.4). The last term on the right-hand side of the previous momentum equation can

also be rewritten as

ρ∇δE
δρ

(ρ) = −∇ · S(ρ) , (3.8)

where S(ρ) = −p(ρ)I − 1
2 |∇ϕ|2I +∇ϕ⊗∇ϕ is a stress tensor.

Under this abstract setup one replicates the calculations done in [1, 5] to derive the relative energy

identity for this system. Let (ρ̄, ρ̄ū) with ϕ̄ = K ∗ ρ̄ be another smooth solution of (3.2). The relative

potential energy functional is given by the quadratic part of the Taylor series expansion of E . Precisely,

E(ρ|ρ̄) = E(ρ)− E(ρ̄)−
〈δE
δρ

(ρ̄), ρ− ρ̄
〉
=

∫
Rd

h(ρ|ρ̄) + 1
2 |∇(ϕ− ϕ̄)|2 dx , (3.9)

where h(ρ|ρ̄) = h(ρ)−h(ρ̄)−h′(ρ̄)(ρ− ρ̄). Similarly, the relative kinetic energy functional is the functional

K(ρ, ρu|ρ̄, ρ̄ū) given by

K(ρ, ρu|ρ̄, ρ̄ū) = K(ρ, ρu)−K(ρ̄, ρ̄ū)−
〈δK
δρ

(ρ̄, ρ̄ū), ρ− ρ̄
〉
−

〈 δK
δ(ρu)

(ρ̄, ρ̄ū), ρu− ρ̄ū
〉

=

∫
Rd

1
2ρ|u− ū|2 dx .

Next one presents the evolution of the relative total energy of the system. For a detailed exposition of

the calculations involved refer to [1, 5].

d

dt

(
K(ρ, ρu|ρ̄, ρ̄ū) + E(ρ|ρ̄)

)
=−

∫
Rd

∇ū : ρ(u− ū)⊗ (u− ū) dx−
∫
Rd

p(ρ|ρ̄)∇ · ū dx

+

∫
Rd

(ρ− ρ̄)ū · ∇(ϕ− ϕ̄) dx .

(3.10)

3.2. Weak solutions. Before stating the notion of weak solution, one explains how the theory on Riesz

potentials helps in giving meaning to the weak formulation of system (3.2), and derives some results

concerning the potential ϕ = 1
c(d)I2ρ.

Having in mind the momentum equation of system (3.2), a reasonable weak formulation requires that

p(ρ) and ρ∇ϕ belong to L1 in space. The density ρ is assumed to belong to C
(
[0, T [;L1(Rd) ∩ Lγ(Rd)

)
,

from which it follows that p(ρ) = ργ ∈ C
(
[0, T [;L1(Rd)

)
. Having this regularity on the density ρ,

using the machinery of Riesz potentials one will observe that for γ ≥ 2d
d+1 the term ρ∇ϕ belongs to

C
(
[0, T [;L1(Rd,Rd)

)
. First, one needs the following result:
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Proposition 3.1. Let ρ ∈ C
(
[0, T [;L1(Rd) ∩ Lγ(Rd)

)
with γ ≥ 2d

d+2 , and let ϕ = 1
c(d)I2ρ. Then ϕ ∈

C
(
[0, T [;L

2d
d−2 (Rd)

)
and its weak spatial gradient is given by

∇ϕ(t, x) =
(2− d)

c(d)

∫
Rd

(x− y)ρ(t, y)

|x− y|d
dy.

Furthermore, ∇ϕ ∈ C
(
[0, T [;L2(Rd,Rd)

)
.

Proof. Set p = 2d
d+2 and note that ρ ∈ C

(
[0, T [;Lp(Rd)

)
. For each t ∈ [0, T [, using (2.1) one has

||ϕ(t)|| 2d
d−2

= 1
c(d) ||I2ρ(t)|| dp

d−2p
≤ C(d) ||ρ(t)||p ,

so ϕ(t) ∈ C
(
[0, T [;L

2d
d−2 (Rd)

)
. The continuity in time of ϕ follows from the linearity of I2.

Now let v ∈ C∞
c (Rd) and set K(x, y) =

1

c(d)|x− y|d−2
. One wishes to prove that for every t ∈ [0, T [

and i = 1, . . . , d it holds that∫
Rd

ϕ(t)vxi dx = −
∫
Rd

∫
Rd

Kxi(x, y)ρ(t, y) dy v dx . (3.11)

Fix t ∈ [0, T [ and note that
∫
Rd ϕ(t)vxi

dx < ∞ since ϕ(t) ∈ L1
loc(Rd). Fubini’s theorem then yields that∫

Rd

ϕ(t)vxi dx =

∫
Rd

∫
Rd

K(x, y)vxi(x)dx ρ(t, y) dy .

Fix y ∈ Rd and let ε > 0. Denote by Bε(y) the open ball of center y and radius ε. Splitting the inner

integral and using the fact that K(·, y) is smooth in Bc
ε(y) one obtains∫

Rd

K(x, y)vxi
(x) dx =

∫
Bε(y)

K(x, y)vxi
(x) dx+

∫
Bc

ε(y)

K(x, y)vxi
(x) dx

=

∫
Bε(y)

K(x, y)vxi
(x) dx+

∫
∂Bε(y)

K(x, y)v(x)νi(x) dS(x)

−
∫
Bc

ε(y)

Kxi(x, y)v(x) dx

= Iε + Jε −
∫
Bc

ε(y)

Kxi(x, y)v(x) dx ,

(3.12)

where νi is the i-th component of the unit inward normal vector to ∂Bε(y). Next it is shown that

lim Iε = lim Jε = 0 as ε → 0 from which (3.11) follows. Using polar coordinates and the fact that

v ∈ C∞
c (Rd) one has that

|Iε| ≤
∫
Bε(y)

|K(x, y)||vxi(x)| dx

≤ C

∫
Bε(y)

1

|x− y|d−2
dx

= C

∫ ε

0

∫
∂Br(y)

1

|x− y|d−2
dS(x)dr

= Cε2 ,

and

|Jε| ≤
∫
∂Bε(y)

|K(x, y)||v(x)| dS(x)

≤ C

∫
∂Bε(y)

1

|x− y|d−2
dS(x)

= Cε .
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Hence, the weak spatial gradient of ϕ is bounded from above by I1|ρ|

|∇ϕ| ≤ d−2
c(d) I1|ρ| ,

whence, by Proposition 2.5 with α = 1 it follows that ∇ϕ ∈ C
(
[0, T [;L2(Rd,Rd)

)
. □

Thus, taking α = 1 in Proposition 2.6 one has that if γ ≥ 2d
d+1 then

ρ∇ϕ ∈ C
(
[0, T [;L1(Rd,Rd)

)
.

Regarding the momentum ρu, it is assumed to belong to C
(
[0, T [;L1(Rd,Rd)

)
, while

√
ρu is assumed to

belong to C
(
[0, T [;L2(Rd,Rd)

)
. For a triple (ρ, ρu, 1

c(d)I2ρ) with the regularity stated above, one defines

the energy H : [0, T [ → R by

H(t) =

∫
Rd

1
2ρ(t)|u(t)|

2 + 1
γ−1ρ

γ(t) + 1
2 |∇ϕ(t)|2 dx .

Observe that in these conditions the energy H is a continuous function.

The precise definition of a weak solution for system (3.2) is now given.

Definition 3.2. The vector function (ρ, ρu) with ρ ≥ 0 and regularity

ρ ∈ C
(
[0, T [;L1(Rd) ∩ Lγ(Rd)

)
,

ρu ∈ C
(
[0, T [;L1(Rd,Rd)

)
,

√
ρu ∈ C

(
[0, T [;L2(Rd,Rd)

)
,

together with ϕ = 1
c(d)I2ρ, is a weak solution of (3.2) provided that:

(i) (ρ, ρu) satisfies (3.2) in the weak sense

−
∫ T

0

∫
Rd

φtρ dxdt−
∫ T

0

∫
Rd

∇φ · (ρu) dxdt−
∫
Rd

φ(0, x)ρ0(x) dx = 0 , (3.13)

−
∫ T

0

∫
Rd

φ̃t · (ρu) dxdt−
∫ T

0

∫
Rd

∇φ̃ : ρu⊗ u dxdt

−
∫ T

0

∫
Rd

(∇ · φ̃)ργ dxdt−
∫
Rd

φ̃(0, x) · ρ0(x)u0(x) dx

=−
∫ T

0

∫
Rd

φ̃ · (ρ∇ϕ) dxdt ,

(3.14)

for all Lipschitz test functions φ : [0, T [ × Rd → R, φ̃ : [0, T [ × Rd → Rd compactly supported in

time, and with φ̃ satisfying, for each t ∈ [0, T [, the following limiting behaviour at infinity

lim
|x|→∞

|φ̃(t, x)| = 0 ,

(ii) Mass conservation:

||ρ(t)||1 = M < ∞ , ∀t ∈ [0, T [ , (3.15)

(iii) Finitude of energy:

sup
t∈[0,T [

H(t) < ∞ . (3.16)

Moreover, a weak solution of (3.2) is called dissipative if its energy H satisfies

−
∫ T

0

H(t)θ̇(t)dt ≤ H(0)θ(0) (3.17)

for any non-negative θ ∈ W 1,∞([0, T [) with compact support.
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From a careful choice of the test function θ above one deduces that the energy H of a dissipative weak

solution of (3.2) satisfies, for each t ∈ [0, T [,

H(t) ≤ H(0) . (3.18)

Indeed, fix t ∈ [0, T [, let κ be such that t+ κ < T , and define θ : [0, T [ → R by

θ(τ) = θtκ(τ) =


1, if 0 ≤ τ < t

t−τ
κ + 1, if t ≤ τ < t+ κ

0, if t+ κ ≤ τ < T.

(3.19)

Using this choice of θ in (3.17) yields

1

κ

∫ t+κ

t

H(τ)dτ ≤ H(0) .

Letting κ → 0+ above one reaches the desired identity.

3.3. Strong solutions. In this subsection, the notion of strong solution that will be used in the subse-

quent analysis is described.

A Lipschitz vector function (ρ̄, ρ̄ū), with regularity

ρ̄ ∈ L∞(
[0, T [;L1(Rd) ∩ L∞(Rd)

)
,

ū ∈ L∞(
[0, T [;W 1,1(Rd,Rd) ∩W 1,∞(Rd,Rd)

)
,

together with ϕ̄ = 1
c(d)I2ρ̄, is called a strong solution of (3.2) if:

(i) ρ̄ > 0,

(ii) (ρ̄, ρ̄ū, ϕ̄) satisfies ∂tρ̄+∇ · (ρ̄ū) = 0

∂tū+ ū · ∇ū+∇h′(ρ̄) +∇ϕ̄ = 0
(3.20)

for almost every (t, x) ∈ ]0, T [× Rd, and

lim
|x|→∞

|ū(t, x)| = 0 ∀t ∈ [0, T [ ,

(iii) for each t ∈ [0, T [ and each κ > 0 so that t+ κ < T the functions

τ 7→ θtκ(τ)
δH̄
δρ

(τ) = θ
(
− 1

2 |ū|
2 + h′(ρ̄) + ϕ̄

)
,

τ 7→ θtκ(τ)
δH̄

δ(ρu)
(τ) = θū ,

are Lipschitz continuous, where θ is given by (3.19) and H̄ : [0, T [ → R is the total energy

H̄(t) =

∫
Rd

1
2 ρ̄(t)|ū(t)|

2 + h(ρ̄(t)) + 1
2 |∇ϕ̄(t)|2 dx .

A strong solution is also assumed to emanate from initial data (ρ̄0, ρ̄0ū0), ϕ̄0 = 1
c(d)I2ρ̄0 that satisfy the

bounds ∫
Rd

ρ̄0 dx = M̄ < ∞ , H̄(0) < ∞ . (3.21)

Multiplying the second equation of (3.20) by ρ̄ū and integrating over space yields

d

dt
H̄ = 0 ,

so H̄(t) = H̄(0) for t ∈ [0, T [. Thus, the continuity equation and the previous expression imply that (3.21)

is propagated for all times t ∈ [0, T [.
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4. Weak-strong uniqueness

For the notions of solutions specified in the previous section, one defines the relative energy function

Ψ : [0, T [ → R by

Ψ(t) = H(t)− H̄(t)−
〈δH̄
δρ

, ρ(t)− ρ̄(t)
〉
−
〈 δH̄
δ(ρu)

, ρ(t)u(t)− ρ̄(t)ū(t)
〉

=

∫
Rd

1
2ρ(t)|u(t)− ū(t)|2 + h

(
ρ(t)|ρ̄(t)

)
+ 1

2 |∇
(
ϕ(t)− ϕ̄(t)

)
|2 dx .

(4.1)

Due to the strict convexity of h(ρ) = 1
γ−1ρ

γ , one obtains the main result, Theorem 1.1, as an immediate

consequence of the next theorem.

Theorem 4.1. Let (ρ, ρu) with ϕ = 1
c(d)I2ρ be a dissipative weak solution of (3.2) with γ ≥ 2d

d+1 , and let

(ρ̄, ρ̄ū) with ϕ̄ = 1
c(d)I2ρ̄ be a strong solution of (3.2). There exists a positive constant C such that the

relative energy Ψ of these solutions satisfies the stability estimate

Ψ(t) ≤ eCTΨ(0) (4.2)

for t ∈ [0, T [. Therefore, if Ψ(0) = 0 then Ψ ≡ 0.

The last two subsections of this part are devoted to give a proof of the previous theorem.

4.1. Integration by parts formulas. Here, one presents two integration by parts formulas that will

be essential for handling the terms containing the electric potential ϕ.

The first formula can be proved in a similar fashion as [1, Propositon 4.2].

Proposition 4.2. Let ρ, η ∈ C
(
[0, T [;L1(Rd)∩Lγ(Rd)

)
with γ ≥ 2d

d+2 , and let ϕ = 1
c(d)I2ρ, φ = 1

c(d)I2η.

Then, for each t ∈ [0, T [,∫
Rd

∇ϕ(t) · ∇φ(t) dx =

∫
Rd

ρ(t)φ(t) dx =

∫
Rd

η(t)ϕ(t) dx = 1
c(d)

∫
Rd

∫
Rd

ρ(t, x)η(t, y)

|x− y|d−2
dxdy . (4.3)

The second integration by parts formula relies on the following identity that is satisfied by classical

solutions of −∆ϕ = ρ :

ρ∇ϕ = ∇
(
1
2 |∇ϕ|2

)
−∇ · (∇ϕ⊗∇ϕ) .

Proposition 4.3. Let ρ ∈ L1(Rd) ∩ Lγ(Rd), with γ ≥ 2d
d+1 , let ϕ = 1

c(d)I2ρ, and let ū be a continuous

vector field defined on Rd satisfying lim
|x|→∞

|ū(x)| = 0 and belonging to W 1,1(Rd,Rd) ∩ W 1,∞(Rd,Rd).

Then ∫
Rd

ρ∇ϕ · ū dx =

∫
Rd

∇ū : ∇ϕ⊗∇ϕ dx−
∫
Rd

(∇ · ū) 12 |∇ϕ|2 dx . (4.4)

Proof. Set p = 2d
d+2 , γ0 = 2d

d+1 and note that ρ ∈ L1(Rd) ∩ Lγ0(Rd). Therefore, by Proposition A.1,

there exists a sequence (ρn)n∈N ⊆ C∞
c (Rd) such that ρn → ρ in L1(Rd) ∩ Lγ0(Rd). For each n ∈ N, let

ϕn = 1
c(d)I2ρn, and note that, as a consequence of the divergence theorem [9], (ρn, ϕn) satisfies∫

Rd

ρn∇ϕn · ū dx =

∫
Rd

∇ū : ∇ϕn ⊗∇ϕn dx−
∫
Rd

(∇ · ū) 12 |∇ϕn|2 dx .
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Next, one wishes to pass to the limit in the above expression. Using (2.4) one deduces that∣∣∣ ∫
Rd

ρ∇ϕ · ū dx−
∫
Rd

ρn∇ϕn · ū dx
∣∣∣ ≤ ||ū||∞

∫
Rd

|(ρ− ρn)∇ϕ|+ |ρn∇(ϕn − ϕ)| dx

≤ C
(
||(ρ− ρn)I1ρ||1 + ||ρnI1(ρn − ρ)||1

)
≤ C

(
||ρ− ρn||γ0

||ρ||γ0
+ ||ρn||γ0

||ρn − ρ||γ0

)
→ 0 as n → ∞ .

Moreover, using (2.3) together with the interpolation inequality one has that∣∣∣ ∫
Rd

∇ū : ∇ϕ⊗∇ϕ dx−
∫
Rd

∇ū : ∇ϕn ⊗∇ϕn dx
∣∣∣ ≤ ||∇ū||∞

∫
Rd

|∇(ϕ− ϕn)||∇ϕ|+ |∇ϕn||∇(ϕ− ϕn)|dx

≤ C
(
||I1(ρ− ρn)I1ρ||1 + ||(I1ρn)I1(ρn − ρ)||1

)
≤ C

(
||ρ− ρn||p||ρ||p + ||ρn||p||ρn − ρ||p

)
→ 0 as n → ∞ ,

and ∣∣∣ ∫
Rd

(∇ · ū) 12 |∇ϕ|2 dx−
∫
Rd

(∇ · ū) 12 |∇ϕn|2 dx
∣∣∣ ≤ ||∇ · ū||∞

2

∫
Rd

∣∣|∇ϕ|2 − |∇ϕn|2
∣∣ dx

≤ C||I1(ρ− ρn)I1(ρ+ ρn)||1

≤ C||ρ− ρn||p||ρ+ ρn||p

→ 0 as n → ∞ .

The result follows. □

4.2. Relative energy inequality. The first step in order to obtain expression (4.2) is to derive a

relative energy inequality satisfied by the relative energy Ψ. The terms involving the electric potential ϕ

are handled using the first integration by parts formula of the previous subsection. Precisely, one has:

Proposition 4.4. Let (ρ, ρu), with ϕ = 1
c(d)I2ρ, be a dissipative weak solution of (3.2) with γ ≥ 2d

d+2 , and

let (ρ̄, ρ̄ū), with ϕ̄ = 1
c(d)I2ρ̄, be a strong solution of (3.2). Then, for each t ∈ [0, T [, the relative energy

Ψ between these two solutions satisfies

Ψ(t)−Ψ(0) ≤ J1(t) + J2(t) + J3(t) , (4.5)

where

J1(t) = −
∫ t

0

∫
Rd

∇ū : ρ(u− ū)⊗ (u− ū) dxdτ ,

J2(t) = −
∫ t

0

∫
Rd

(∇ · ū)p(ρ|ρ̄) dxdτ ,

J3(t) =

∫ t

0

∫
Rd

(ρ− ρ̄)ū · ∇(ϕ− ϕ̄) dxdτ .

Proof. First recall that the energy a dissipative weak solution of (3.2) satisfies

H(t) ≤ H(0) , (4.6)

while the energy of a strong solution of (3.2) satisfies

H̄(t) = H̄(0) , (4.7)
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for every t ∈ [0, T [. Next, one considers the difference (ρ − ρ̄, ρu − ρ̄ū) between a weak and a strong

solutions of (3.2):

−
∫ T

0

∫
Rd

∂tφ(ρ− ρ̄) dxdt−
∫ T

0

∫
Rd

∇φ · (ρu− ρ̄ū) dxdt−
∫
Rd

φ(ρ− ρ̄)
∣∣
t=0

dx = 0 ,

−
∫ T

0

∫
Rd

∂tφ̃ · (ρu− ρ̄ū) dxdt−
∫ T

0

∫
Rd

∇φ̃ : (ρu⊗ u− ρ̄ū⊗ ū) dxdt

−
∫ T

0

∫
Rd

(∇ · φ̃)
(
p(ρ)− p(ρ̄)

)
dxdt−

∫
Rd

φ̃ · (ρu− ρ̄ū)
∣∣
t=0

dx

= −
∫ T

0

∫
Rd

φ̃ · (ρ∇ϕ− ρ̄∇ϕ̄) dxdt ,

for all Lipschitz test functions φ : [0, T [×Rd → R, φ̃ : [0, T [×Rd → Rd compactly supported in time and

having for each t ∈ [0, T [ the following limiting behaviour at infinity

lim
|x|→∞

|φ̃(t, x)| = 0 .

Using as test functions the functions φ and φ̃ given by

φ = θ
δH̄
δρ

, φ̃ = θ
δH̄

δ(ρu)
,

where θ is given by (3.19), after letting κ → 0+ one obtains

∫
Rd

δH̄
δρ

(ρ− ρ̄)
∣∣∣τ=t

τ=0
dx−

∫ t

0

∫
Rd

∂τ
δH̄
δρ

(ρ− ρ̄) dxdτ −
∫ t

0

∫
Rd

∇δH̄
δρ

· (ρu− ρ̄ū) dxdτ = 0 , (4.8)

∫
Rd

( δH̄
δ(ρu)

· (ρu− ρ̄ū)
)∣∣∣τ=t

τ=0
dx−

∫ t

0

∫
Rd

∂τ
δH̄

δ(ρu)
· (ρu− ρ̄ū) dxdτ

−
∫ t

0

∫
Rd

∇ δH̄
δ(ρu)

: (ρu⊗ u− ρ̄ū⊗ ū) dxdτ −
∫ t

0

∫
Rd

∇ · δH̄
δ(ρu)

(
p(ρ)− p(ρ̄)

)
dxdτ

=−
∫ t

0

∫
Rd

δH̄
δ(ρu)

· (ρ∇ϕ− ρ̄∇ϕ̄) dxdτ .

(4.9)

The desired identity is then obtained by subtracting (4.7), (4.8) and (4.9) from (4.6), together with a

meticulous rearrangement of the terms that is done using the continuity equation ∂tρ̄+∇ · (ρ̄ū) = 0, the

equation ∂tū+ ū · ∇ū = −∇
(
h′(ρ̄) + ϕ̄

)
, and the second equality of (4.3). For a detailed presentation of

the calculations involved refer to [1, 5, 7]. □

4.3. Bounds in terms of the relative energy. In this section one shows that

Ji(t) ≤ C

∫ t

0

Ψ(τ) dτ , i = 1, 2, 3 , (4.10)

for some positive constant C depending only on the dimension d, on the adiabatic exponent γ and on the

L∞ norm of ū and its derivatives, under the same hypothesis of Theorem 4.1. Then Gronwall’s inequality

will imply (4.2).

The first two terms are treated as follows,

J1(t) = −
∫ t

0

∫
Rd

∇ū : ρ(u− ū)⊗ (u− ū) dxdτ

≤ C ||∇ū||∞
∫ t

0

∫
Rd

ρ|u− ū|2 dxdτ

≤ C

∫ t

0

Ψ(τ) dτ ,
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J2(t) = −
∫ t

0

∫
Rd

(∇ · ū)p(ρ|ρ̄) dxdτ

≤ ||∇ · ū||∞(γ − 1)

∫ t

0

∫
Rd

h(ρ|ρ̄) dxdτ

≤ C

∫ t

0

Ψ(τ) dτ ,

whereas for the third term one uses the integration by parts formula (4.4) to deduce that

J3(t) =

∫ t

0

∫
Rd

(ρ− ρ̄)ū · ∇(ϕ− ϕ̄) dxdτ

=

∫ t

0

∫
Rd

∇ū : ∇(ϕ− ϕ̄)⊗∇(ϕ− ϕ̄) dxdτ −
∫ t

0

∫
Rd

(∇ · ū) 12 |∇(ϕ− ϕ̄)|2 dxdτ

≤ C (||∇ū||∞ + ||∇ · ū||∞)

∫ t

0

∫
Rd

|∇(ϕ− ϕ̄)|2 dxdτ

≤ C

∫ t

0

Ψ(τ) dτ ,

as desired.

Appendix

Here it is proved that C∞
c (Rd)) is dense in L1(Rd) ∩ Lγ(Rd). This result is used in the proof of

Proposition 4.3.

Proposition A.1. Let f ∈ L1(Rd)∩Lγ(Rd) with γ > 1. Given ε > 0 there exists φ ∈ C∞
c (Rd) such that

||f − φ||1 + ||f − φ||γ < ε .

Proof. Let f ∈ L1(Rd) ∩ Lγ(Rd) and ε > 0. Any measurable function can be written as the difference

between two non-negative measurable functions, so one can assume that f ≥ 0. Set

S = {s : Rd → R measurable simple function | L({x ∈ Rd | s(x) ̸= 0}) < ∞} .

Given that f is measurable, there exists a sequence of measurable simple functions (sn)n∈N such that 0 ≤

s1 ≤ s2 ≤ . . . ≤ f and sn(x) → f(x) ∀x ∈ Rd. Since f ∈ L1(Rd)∩Lγ(Rd), then (sn)n∈N ⊆ L1(Rd)∩Lγ(Rd)

whence (sn)n∈N ⊆ S. Let hn = |f − sn| + |f − sn|γ and observe that |hn| ≤ 2|f | + 2γ |f |γ ∈ L1(Rd),

hn(x) → 0 ∀x ∈ Rd. Consequently, by Lebesgue’s dominated convergence theorem,

||f − sn||1 + ||f − sn||γγ =

∫
Rd

hn dx → 0 .

Hence, there exists s ∈ S such that

||f − s||1 + ||f − s||γ <
ε

4
.
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Let ε̃ > 0 be such that 2||s||∞(ε̃ + ε̃1/γ) < ε/4 . By Lusin’s theorem there exists g ∈ Cc(Rd) such that

L({x ∈ Rd | g(x) ̸= s(x)}) < ε̃ and |g| ≤ ||s||∞ . Thus,

||g − s||1 + ||g − s||γ =

∫
Rd

|g − s| dx+
(∫

Rd

|g − s|γ dx
)1/γ

=

∫
{g ̸=s}

|g − s| dx+
(∫

{g ̸=s}
|g − s|γ dx

)1/γ

< 2ε̃||s||∞ + 2ε̃1/γ ||s||∞

<
ε

4
,

so

||f − g||1 + ||f − g||γ ≤ ||f − s||1 + ||s− g||1 + ||f − s||γ + ||s− g||γ

< ε/4 + ε/4

=
ε

2
.

Now let η be the standard mollifier and set gδ = ηδ ∗ g, for 0 < δ < 1 . Since g is continuous, gδ → g

uniformly on all compact subsets of Rd, as δ → 0. Moreover, g has compact support so there exists r > 0

such that supp(g) ⊆ Br(0), hence

supp(gδ) ⊆ supp(g) +Bδ(0) ⊆ Br(0) +Bδ(0) ⊆ Br+δ(0) ⊆ Br+1(0) =: K .

Observe that

||gδ − g||1 + ||gδ − g||γ =

∫
Rd

|gδ − g| dx+
(∫

Rd

|gδ − g|γ dx
)1/γ

=

∫
K

|gδ − g| dx+
(∫

K

|gδ − g|γ dx
)1/γ

≤ sup
K

|gδ − g|
(
L(K) + L(K)1/γ

)
.

Given that sup
K

|gδ − g| → 0 as δ → 0, there exists 0 < δ̃ < 1 such that

sup
K

|gδ − g| < ε

2
(
L(K) + L(K)1/γ

) whenever δ < δ̃ .

Let δ0 = δ̃/2 and set φ := gδ0 ∈ C∞
c (Rd). Finally, one gets

||f − φ||1 + ||f − φ||γ ≤ ||f − g||1 + ||g − φ||1 + ||f − g||γ + ||g − φ||γ

< ε/2 + ε/2

= ε ,

as desired. □
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